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Abstract

Particle beam motion near a nonlinear belatron resonance, in the pres
ence of tune modulation, is represented by the driven pendulum equa
tion. We use an analytical approach to study the behavior of this
system when the drive frequencey is close to the natural lrequency. We
find that two stable fixed points may coexist, a phenomenon which
could be investigated in nonlinear dynamics experiments. We also re-
port prototypical B778 experimental results, on persistent signal loss

as a resull of tune modulation,

Introduction

Oune of the objectives of nonlinear dynamics experiments in the Ier-
milab Tevatron is the study of transverse phase space in the presence
of sextupolesil [2]. The experimental obhservation of persistent signals
at a frequency of 0.4 fpey demonstrates bound particle motion in a
fifth order resonance island. When, in addition, the tune is modulated
according to

Q- Qo gsin(2wQar!) {1}
the resulting phase space motion and the behavior of the persistent
signal may change dramaltically, depending on Lhe values of g and Q ay.

If the phase space motion of a resonant particle is followed strobo-
scopically - every fifth turn - it appears to rotate around the center of
an island, with a small amplitude tune of @, the island tune. Simnple
"slow™ and "last” Lheories predict that moderate driving amplitudes
q do not significantly affect the island structure when the drive fre
quency @ is incommensurate with the island tune - when the ratio
w Qar/Qy is not close to one. However, when the frequencies are
commensurate, w = 1, the persistent signals rapidly decav. This paper
addresses (he commensurate case, in which the simple thearies break
down,

It has been shown [3] that the motion is adequately described by the
equalion of a pendulum driven by a sinusoidal torgue. A new nonlinear
approach is necessary for an accurate study of the commensurate case.
In this study we employ three approaches, using theoryv, numerical
simulations, and a tracking code.

In Fig. 1 we show a comparison of the three approaches in the
{q, @rr) space, and note that the agreement between the "slow” the-
ory (dashed line) and the numerical integration of the pendulum using
DPEND (boxes) is very good. The deviation of the tracking results
using EVOL (crosses) indicates that the representation by a pendulum
is not perfect - the islands are large- and other resonances are present
{third order).

Theory and Simulations

The pendulum equation for one of the n small islands with tune
modulation as in Eq. (1) is

d*y

di?

with ¥ = n¢ and ¢ = n{2#x)2gQm, where n is the order of the integer

resonance and ¢ “he horizontal betatron phase.[3] To obtain analytical
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Figure 1: Stability diagram in the {(g,Q@a) plane for a sixth order
resonance. For detlails , see text.

information on the pendulum island structure we look for pendulum

oscillations that are locked to the driving torque.i4] With the assump-

tion
Yt} = asin(2rQarl) 4 &(8) (3)
we obtain to lowest nonlinear order
aw? 4 2J{a) = € (4)
d?5(t ) ,
dt(i) s (20Q 1) Jo( ) 4 2Ja(ex) cos(4mQart)if(t) = 0 (5)

where Jy. Jy and J; denote Bessel functions and ¢ of (2w Q)%
Equations (4) and (5) describe the pendulum fixed points and their
stability properties, respectively. We obtain more intuitive results by
employing a "small but nonlinear” angle approximation to Fqns. (4)
and (5), which is equivalent to approximating sin ~ ¢ -y%/6 in Eqn.
{2). After some simple calculations:

at 81
(1?6(!) a?  o?

G b 27’ [(1 - o g cos(amQum)léy) = 0 (7)

wz]n b 8ep? = 0 (6)

The real solutions of the cubic in Eqn. (6) represent fixed points of the
driven pendulum or, if they are stable, islands in the plase space that
can trap beam particles. The stability of these fixed points is given in
the present formulation by Eqn. (7}, in which we recognize the Mathieu
equalion. The real solutions of the cubic and their stability are plotied
in Fig. 2 as a function of the dimensionless driving frequency w. Also
in the figure we plot DPEND simulation results, crosses and boxes,
that represent respectively stable and unstable pendulum fixed points
for eg = 0.1. We note that the cubic approximation is valid for angles
in the range ¥ < | ¢ |, > 2 beyond which it breaks down. A study
of the complete Eqn. {4) is then necessary.
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Figure 2: Pendulum fixed points for increasing values of «p, {a) 0.001,
(b} 0.01, {c) 0.1, (d) 0.3, (¢) 0.6, (e} 1.0, and their stability diagram.
Near resonance there are two stable fixed points.

In Fig. 2 there are two families of lines, ane representing approximate
pendulum fixed points labeled by different values of the driving torque
amplitude ¢, and the other (bold lines) representing their stability. The
former family consists of the elliptically shaped lines on the upper half
of the (v,w) plane, and a corresponding nonsymmetric sct in the lower
half plane. For a given driving frequency w there is cither three or
one real root. Two positive roots coalesce to a single double root at
w = wt(e) ot

The family of bald lines is obtained from the parametric oscillator
or Mathieu equation of Egn. (7). The tongue shaped areas emanating
/2.1, ..

pendulum motion. The parametric instability at w -

from the points w are regions of instability for the driven
I /2is an cxample
of a subharmonic instabrlity 5.

Taking into acceunt the dominant unstable Mathicn Langue at the
resonance w = | we observe that only one stable lixed point exists {or
frequencies far from w’. However, near but below the resonance region
w S w*(¢) the previously unstable negative fixed point hecomes stable,
and two stable roots roezisf. As w inereases further the second fixed
point grows and finallv dominates over the ariginal one, for frequencies
larger than w*(¢). Note that the cubic root transition from two real and
positive to two complex conjugate ones occurs exactly on the critical
Mathieu line on the small frequency side of the resonance.

The curve located al the double roots of the cubic has the Tollowing
form:

42

3
I - w?) ~ 1.088(1
:xv’z( ) (

o - wz):t/x (%)

This is valid when w 1 and it is the eritical invariant boundary
that separates the regular fraom the chaotic regime within the cubic
derived from the the

approximation. The corresponding boundary

linearized pendulum equation for Qay < Qy isf3
€ 1 w? (™

For frequency values such that w -+ 1 the difference between Tigns.
(8) and (9) is surprisingly small-the "slow” theorv proves Lo be quite
a good approximation even in this region (Fig. 1).

These approyimate analyvtical predictions on the fixed point struc
ture near the resonance have also been tested numerically. In Fig. 3
we plot one phase space point per drive period for increasing driving
frequency. We note the appearance of the second island in Fig. 3a,
its subsequent growth over the original island in Fig. 3h.c and its fi
nal domination in Fig. 3d. This is in complete agreement with (he
theoretical arguments ahove,
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Figure 3: Poincaré surfaces of section for the driven pendulum for four
different driving frequencies with ¢ - 0.0001 and ¢, = 0.0061.

fixed point dissapears and a vew one takes over as the pendulum goes

One

through resonance.

Experimental Data

During the June 1989 run of the E778 experiment, the small amph
tude horizontal tune of the Tevatron was set just above the 19 2/6
resonance, with a negative gquadratic detuning with amplitude. Con
sequently, when a bunch was kicked horizontally in a single turn, some
fraction of (he tolal charge was frapped in a fifth order resonance iy
land. This phase locked charge caused a "persistent signal”™, which was
recorded on the turn-by-turn data taken from beam position monitors.
After

turns. this signal appeared as a solitary narrow Fourier peak. Tvp

the rapid filarmentation of the untrapped charge in about 160
ically, data were taken for about 250,000 turns, or about & seconds,
out of the two minute periodic cycle of the Tevatren. During the few
seconds in which data were taken. the tune modulation amplitude and

frequency were scanned, according (o

4
¢ ‘Jn,r
t
Qrr ~ Qaro,
!
where T is the duration of the scan.
Fig. 4 shows the prototypical response of a persistent signal to such a
tune modulatinn scan. The top lefl picture shows (he raw dara taken at
one of the two horizontal beam position monitors, over approximaltely
250,000 turns, or 5 seconds. In the top right picture, a mountain
range display of muliiple discrete Fourier transforms, over a narrow
tune range, shows a persistent signal at @ — 0.4, the resonance tune.
Alter about 150,000 turns, the persistent signal disappears from sight.
The bottom left picture plots the amplitude of the persistent signal,
versus time. Initially, the persistent signal draps exponentially, with
a decay time of about 64,000 turns. Ar abont 150 000 turns, when
the drive tune and the island tune are commensurate, the decay rate
increases by more than an order of magnitude. The location in the
{q,Qnar) plane of the transition from stability 1o instability is then
determined, knowing go, Qare and T, bv inserting this critical time
into Fqgns. (10) and (11). The phase of the persistent signal is plotted
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Iligure 4: Persistent signal loss as a result of Lune modulation. The
data are from reference |6,

in the bottom right picture, showing that the phase locking begins 1o
be destroved at about the critical time.

Fig. 5 snmrmarizes our analysis of a preliminacy sample of F778 data,
spanning more than an order of magnitude in the critical tune modu-
lation parameters, i the region between “slow™ and “commensurate™,
I'he data are well fitted by the solid thearetical curve, after empirical

variable, Thev also show the same

adjustment of )y, the single frec
droop at smal! ¢4y exhibited in Pig. |

Conclusions

The thearetical and practical understanding of a high energy collider
in the presence of controlled nonlinearities is very important, nol only
for accelerator design and operation, but also for the general analvsis
of complex dynamical systems. On the theoretical side. the under
standing of tune modulation phenomena reduces to (he study of a gen-
eral Hamillonian svstem - a gravity pendulum driven by a sinusoidal
torque. The driven pendulum equation describes many phenomena in
physics, such as Josephson junctions and optical multistability, The
results presented here are also valid for these problems. Our analysis
above was restricted to small deviations around the motion of a pen
dulum which is phase locked to its drive frequency, in a small angle
approximation. We only studied pendulum libratiens, but the method
can he extended to inclide rotations, as well. Running phase locked
sohilions correspond toisland sidebands. Their study will be presented
elsewhere.

On the practical side, the BT78 experiment provides information re-
garding the structure of nonlinear phase space. Preliminary analyvsis of
ture madulation data shows that particles trapped in a resonance is
land escape when the modulaiion tune approaches the istand tune. The
response of a persistent signal to a chirped tune modulation therefore
provides a diagnostic with which island tunes can be measured, in one
transverse ditension. This, combined with a knowledge of the tune
versus amplitude curve, provides a complete measure of the strength
of a resonance.

We found that two stable fixed points exist simultaneously for a
range of drive frequencies near the island tune ¢J;. The coexistence of
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Figure 5: Comparison of tune modution data taken from reference [6!

with theory.

two stable islands raises some interesting questions for tune modula-
tion experiments. If the modulation frequency changes rapidly enough,
it may be possible 1o transfer particles from one island to the other,
without substantial losses. More generally, the experiments can probe
the time structure of the persistent signal response in this region. The
modulation of quadrupoles in the E778 experiment also causes a small
apparent parametric modulation of the nonlinear strength, in addi-
tion to causing a tune modulation. We have not discussed parametric
modulation effects here, mainly because investigations are at a very
preliminary stage. Tentatively, however, parametric modulation does

not seermn {o have as powerful an influence as tune modidation.
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