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INTEGRAL-EQUATION METHOD FOR CALCULATION OF COUPLING IMPEDANCE
FOR A VACUUM CHAMBER INHOMOCGENEITY IN ACCELERATORS

S.5.Kurennoy and S5.V.Purtov

Institute for High Energy Physics, Serpukhov,

A method for calculation of coupling impedance pro-
duced by an inhomogeneity of vacuum chamber is develo—
ped. Both the inhomogeneity and vacuum chamber have to
be of the same (axial or flat) type of symmetry.
Bourdary shape of inhomogeneity is given by a general
single-valued function cf the longitudinal coordinate.
The method allows one to calculate impedances both at
low frequencies and in resonance range. The interaction
of a few insertions is alsc considered.

Introduction

Beam stability requirements are known to restrict the
allowed values of the beamchamber coupling impedances
[1]. The impedances for a smooth chamber can be calcu-
lated easily (2], but the calculatien of those produced
by some chamber inhomogeneities, i.e., by bellows,
Jjunctions, etc, is a much more difficult problem.

Our paper develops a method allowing one to calcula-
te the impedance for a single chamber element (group of
elements), which is far enough from other inhomogenei-
ties. In such a case it is convenient tc study an idea-
lized problem: let an inhomogeneity be placed on an in-
finite homogenecus beam pipe. The TBCI code (3] is usu-
ally used to compute the impedance for such a structu-
re, but this way requires a lot of computer resources.
There are also some other methods: paper (4] treats the
case of particular inhomogeneity form (pillbox), and in
Ref. (5] the impedance calculation is reduced to a nu-
merical solution of a boundary problem by means of the
SUPERFISH code (6]. Our method allows cne to find semi-~
analytically the coupling impedance for an inhomogerei—
ty. which can be shaped quite generally, in a cylindri-
cal chamber., as in Refs.[4,5], or in a flat one.

The method developed supplements the matrix one {7].
(which calculates the impedance for an infinite
periodic structure) being. actually, the analogy of the
latter for nonperiodic structures.

1.Problem Formulation

A model of an accelerator vacuum chamber is conside-~
red: an infinite pipe having an inhomogeneity of length
L. Let this system have an axial or flat geometry. The
boundary shape is given by the function r = b(z);
b(z) =bat =z| 2 L/2, where b is the smooth—chamber
radius (half-height) (Fig.1). We assume that this
function is single-valued. i.e. one and only one point

r = b(z) corresponds to any z € (-00,0).

—
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Fig.1l. Layout of the problem.
Let the current perturbation wave travel along the
chamber axis z:
Jz(z,r,t.) = p(ko)Bc exp(ikoz—iwt) f(ar), (1)

where w = ﬁcko, a is the beam radius. The solution to

the Maxwell equatiors with current (1) is:

-1
ikz
E (z.1) Jdk e [A(k]g(xk )+ 8(k—k ){p(xr)}] (2)

In Bq. () 1}, = Ko-(w/c)?
is dropped out;

and smllarly for Ex- and H‘P
x = xkoz ko/’r; the factor 1p(l~{o)/’¢':0k0
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the upper line in {...} corresponds to Kr<a, the lower
one to r>a and the functions g(x) and p(x} are:
- in axisymmetric case
g(x)=Io(x): p(x)= —~xa(K1 (xa)IO(x)H1

~ for flat geometry
g(x) = ch x : p(x) = -ch(x—ya). (3f)

The unknown function A(k) in Egs.(2) 13 determined
from the boundary conditions on the chamber wall:

/ 2
Buw ; =
E #bU(2)E +(1-1)2=/ 1+ (b’ (2)) ZOH@} =0. (4)

r=b(z)

(xa)K_{x)); (3a)

L4 (p. ow) ig the skindepth ard o is the
Substituting field

Here &

corductivity of the wall material.
expressions (2) inte Eg. (4), we get an integrail
equation for the function A(k). In particular, it is
easily solved for a smocth pipe when b{z) = b:

200 = stk 3a @y =
[w} =]

plxb)—(1+i)np' (xb)/xb
ﬁ(k'-k‘_)] - , (S}
® giybi-(1+1)ng’ (xb) /x>

where ¢ and g are defined in (3) and v = 8/2b+ (wb/c)2

i

Substituting E (2) into the longitudinal impedance
(2], we split A.’k) into A (k) + F(k), where A(O)(k)
is defined by Eg. (5). As a result we get

:Zo (o) ZniZO _
Z{w) = - (ga (k = I)sz - gF(k ). (6
Bk S BkOSl

The first tem in BHS of Egq. (6).
nal to the vacuum—chamber length L

which iz proportio-
cham =[dz, ig just the
smooth-pipe impedance and the second one is the impeda-
nce produced by the inhomogeneity itself. So, the inho-
mogeneity—produced impedance Z(w) is related to F(ko)‘

‘2.The Integral Eguation

1. Substituting Egs. (2) into bmxrﬁc.}fy condition {(4)
with account of Alk) = S&(kk_)a = (k) + Fk). we

obtain the following integral equation for Fi(k):

1(k—ko)z
Jdk e flk.b(z).b'(2)]F(k} = g(b(z).b'(2)]. (7}

g el
where flk,b(z).b'(z)] = g(xkb(z)) -
=g (x biz})/x br(ib' (z)kb +(1+i)n¥ 1+b"’ (z)e);

gib(z).b' (z)] = 1/(g-(1+i)ng ' /x) «
k b

n
{pg -p g+1b u)———(p a-pg, LY +(1+1) s [ng'~p'gz+
Y . 2. ..
+ib" (Z)T(ng P gz)+ 1+b' (z) (ng pgz)] }

In Eg. (7) the notations of Eq.(2) are used and x=%b,
p=p(xb). ga=g(xb), P,= plxb(z)). g,= glxb(z)).

The RHS of Eq. (7). qib(z),b'(z)], has the property
that q(b,0] = 0. Hence, q(b(z).b'(2z)] = 0 holds for
each z satisfying |z|2L/2. It follows that for a smooth
chamber, i.e., when b(z) = b, the solution to Eq.(7) is
trivial, F(k) = 0. The RHS g(b(z).b'(z)] can be easily
expressed in an explicit form for a given symmetry.

Eq. (7). the Fredholm equation of the 1st kind, is an
ill-posed problem (8] and, besides, is inconvenient for
a numerical solution. Its Fourier transform, with acco-



1778

unt of b{z) = b when [z| > L/2, yields the 2nd kind in-
tegral equation:

F(k) + jdk Kk, k') F(k') = R(k) , (8)
in which el
L/2
~1(k-k')z (flk',b(z).b'(z)]-flk',b,0])
Kik,k'} = J‘dz e .
2rf(k,b,0]
N
L/2 L2
1 *i(k—ko)z
R(k) = ——————— sz e ' qlb(z).b' (z)} . (9}
2nf(k,b. 0]
~L/2

This equation is more convenient both for a numeri—
cal solution and for an analytical study. So. 1t is
easy to construct the perturbation expansion over the
powers of the kernel K for the sclution of Eq.(8) by
means of iterations. If e = max(b{z)/b-1) << 1., an
e-expansion can easily be obtained in analogy to what
has been done for periodic structures [3].

2. The transiticn from a single perturbation (Fig.1)
to N identical equidistant ones (Fig.2) is achieved by

IDIDI
7N\

> - =
MO G
A
Fig.2. Croup of identical equidistant inhomegeneities.

a simpie modification of the kernel and RHS of Eq. (8):

hN(k k') = @N(k—k') K1 (k.k'),
PNLK) = <I>N(k~ko) R1 (k).
where sin xND/2
XD o Znm
@N(x) = sin xD/2
N , XD = 2rm, m= 0, 21

K1 and R1 are defined in Eg.(9). Note, that the matrix

equation of Ref. [7] is obtained in the limit of N ~ oo,

3.Numerical Study of Integrai: Equation

1. In some cases the kernel K and RHS R of Eq.(8) can
be expressed i1n an analytic form. But even in such a

case a numerical solution of the integral equation
secems inevitable. For this purpese it is necessary to
cut the integration over k' up to a finite range,

[kQ—Ak,qu\k]. We choose cut-off Ak = Zme/min{L.b).

where # is a dimensionless parameter. Then the integral
equation 15 replaced by the following linear system:

. M .
Fik) + WKk Lk
31
, kK
5
quadratuwre on the [kO*Ak,kon*Ak] interval. The indepen—

j)F(kj) = R(ki). 1=1,..M, (8]

whaere w are waeights and points of M-point Gaussian

dence of the results on the cut—off parameter # and on
the number of subdivision points, M, is a criterion for
the results to be correct. Computations show that the
progran works well both in the low frequency range and
for resonance calculations. But when frequencies are
much above the chamber cut-off frequency, we must
integrate fast-oscillating functions. The subdivision
point number, M, has to be large in this case and the
matrix in Eq.(8') becomes ill-defined. Hence, at these
frequencies other, more refined, numerical procedures
should be used to solve the integral equation.

-
The computation time has the M -dependence on the
matrix size M arnd i3 also proportional to the subdision

number Ndiv

and RHS term are calculated numerically. Typical compu-—
tation times (CPU ICL-1906A) for a single frequency
are: for analytic kernel — 1-2s for M € 32; for nume-
rical kermel - 15s at M = 15 and Nd1v= 16 in the flat

chambey and twice that in the cylindrical one. It is
seen that kernel computation takes most of this time.
2.Low frequencies. Calculations show that at frequen-—

of the [-L/2.L/2] interval when the kernel

cies, much lower than the chamber cut-off, Re Z(w) is
related only to an increase of the wall swface. When
v > lamd o - o, Im Z(w) is negative and proportional
to frequency. So, both widenings and contractions of
the chamber are inductive elements. If one denctes
h = max (I:a(z)—b)2 then for h << b the inductance beha-
ves like ImZ o« h™, and for h ~ b usually as ImZ « h.
The dependence on the perturbation length at fixed h is
as follows: ImZ{w) increases with L increase till

L € b, and for large L it is almost L-independent.
Empirical formulae forr the inductance € = Im Z(w)/w
of some typical discontinuities are obtained. For s
chamber cavity, which has a trianguliar axial
cross~section with base L and height h (h € k), we get:

Z zZ =

= —=2—flsin e - =2 Eany LZ4an®
Here 8 is the near—base angle, B is the width of a
flat chamber and is replaced by wb in the case of a
cylindrical chamber. For a chamber contraction having

the same triangular cross—section, £ = Zoha/(ZcE) .

The inductance for a couple of transitions of length
1 from the chamber radius b to that of the insertion,
bth or b-h, for 1 << L,b twns out to be almeost
indeperdent. of the distance L between transitions. When
L > b, the inductance produced by a widening of the
chamber is equal to that of a contraction with the sane
value of h. For L 2 2b, the value of the inductance is

approximated by £ = ZOhEV 8 /(2cB).

It should he noted that in paper [10] the low-frequ-
ency impedance for some simple discontinuities has been
studied with the help of the TBCI code [3]. The results
ohtained and empirical formulae are similar to ours.

3.Resonances. As an example, we calculate resonances

of the longitudinal impedance produced :in the flat
chamber with b = 3cm and B = nb by a triangular-shaped
cavity with the length L = lcm along the beam
direction. Figure 3 shows the results in the frequency
range up to 14 GHz for the case when this insertion has
the depth h = 0.5cm and the wall conductivity is
o = 1.43/(u2'm). In these computations, M = 32 and
# = 2 have been used. A typical rescnance band-width is

nears 1 MHz. The resonance values of four lowest
resonances vary with h-variation as shown in ig.4.
When h increases. resonance frequencies decrease

monctonically but rather weakly, and they are quite
near to the cut-off frequencies of different chamber
modes, especially for small chamber perturbations.
Unlike time—domain methads for impedance calculati-
ons, which solve a nonstationary problem (the TBCI code
being an example), our approach does not give a picture
of the broad-band impedance forr a single discontinuity
at frequencies higher than the smooth chamber cut-—off
frequency. It is quite natural due to the problem for-
mulation itself, because we consider a stationary pic-
ture in the frequency domain. Since an infinite struc—
ture is considered. the field encrgy 1s absorbed in the
chamber walls, rather than ieaks from the whole struc—
ture. This suggests that the real part of the impedance
vanishes in the limit of perfectly conducting walls,
i.e., Re Z(w)= 0 for any w except for resonance frequ—
encies. At the same time, 1t is known, that it iz the
energy leaking from the structure at w > wout that

leads to the broad-band impedance in
calculations (Red(yw; w 0 for every W » w
c

time-domain

ut)'



Obviously, the nonstationary approach is adequate if
fields induced by a particle bunch damp before the next
bunch arrives, e.g. in LEP. The hroad-band impe- dance
picture 15 quite adequate in this case. In the opposite
caze (UNK, ZHT, 53C) it is necessary to know a detailed
impedance pattern and the stationary approach has to be
used in calculations.

4.Group of inhomogeneities. Let us compare the impe-—
dance for a single insertion with that for a set of N
equidistant insertions having the same form. This

corparison can provide us with information on impedance
additivity. Fig.5 shows Im Z/N at frequency 10 MHz
versus N for a variable distance D between discon-
tinuities. Here L = lem, h = 0.5¢m and b = 3cm are
taken. The value of Re Z/N is independent of N for any
distance D. The pictwe shows that even at low
frequencies the impedances of different elements are
additive only when the distance between them is
sufficiently large (D > 2b). So, the calculation of the
low~frequency impedance for bellows from the impedance
of a single corrugation. e.g. Ref.[1l]. yields only an
approximate answer.

The rescnant frequencies of the set of two ident:ical
elements with L= lecm. h = 0.5cm and b = 3cm differ
only slightly from those in the case of N =1 (cf.
Fig.3). However, the wvalues of the resonances are
strongly dependent on the distance D between elements.

In Fig.6 the reduced values of impedance, Zres/N, are

compared with those in the case of N = 1 at different
D's. The oscillations of Zrev/N are seen perfectly.

Conclugion

The integral-equation method for calculating the
coupling impedance generalizes the matrix method (7] to
nonperiadic structures. The above results show that the
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method can be successfully used to calculate the
impedance for an arbitrary-shaped inhomogeneity both at
low frequencies and in the resonance region.

This method can also be applied to calculate the
transverse impedance in the same way as the matrix one
[7]. Unlike the longitudinal case, after substituting
fields into the boundary conditions we get a set of two
coupled integral equations instead of integral equation
(7) or (8). We do not present it here.

As in the numerical solution of Eq.(8) most of the
CPU time 13 spent for computing the kermel. it seems to
be promising to solve directly the 1st kind integral
equation, Eq.(7). because its kermel iz given in the
explicit analytical form from the start.

More detail and discussion can be found in Ref.[12].

The authors would like to thank V.I.Balbekou
Jor fruftful discuseions and remarks.
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Fig.S. Imaginary part of impedance versus the number of
inhomogeneities N for various distances between them.
Velues for N + @ are obtained by the matrix method (7).
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