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INTEGRAL-EQUATION METHOD FOR CALCULATION OF COUPLING IMPEDANCE 

FOR A VACUUM CHAMBER INHOMOGENEITY IN ACCELERATORS 

S.S.Kurennoy and S.V.Purtov 

Institute for High Energy Physics, Serpukhov. 142284. USSR 

A method for calculation of coupling impedance pro- 
duced by an inhomogeneity of vacuum chamber is develo- 
ped. Both the inhcmcgenelty ard vacuum chambsr have to 
be of the same (axlal or flat) type of symmetry. 
Boundary shape of lnhomcqenelty is given by a general 
single-valuel function of the longitudinal cc0rdinat.e. 
The methal allows one to calculate impedances both at 
low frequencies and in resonance range. The interaction 
of a few insertions is also considered 

Introduction 

Beam stability requirements are known to restrict the 
allowed values of the beam-chamber coupliq impedances 
[ll. The impedances for a smooth chamber can be calc~ 
lated easily (21. but the calculation of those produced 
by some chamber inhomogeneities, i.e., by bellows, 
junctions, etc. is a much more difficult problem. 

OX paper develops a method allowing one to calcula-- 
te the impedance for a single chamber element (group of 
elements). which is far en@ from other inhomcgenei- 
ties. In such a case it is convenient to study an idea 
lized problem: let an inhomcgeneity be placed on an in- 
finite homogeneous beam pipe. lhe IX'1 cede [31 is usu 
ally used to compute the impedance for such a stnlctu 
re. but this way requires a lot of computer resources. 
There are also some other methods: paper [4] treats the 
case of particular lnhomcgeneity form (plllbox). and in 
Ref.[51 the impedance calculation is reduced to a nc--- 
merical solution of a s0undar-y problem by means of the 
SUPERFIs1-I code (61. &r methal allows one to find semi- 
analytically the coupling lmpednnce for an inhomqenei- 
ty. uhlch can be shaped quite generally, In a cyl&dr- 
cal chamber. as in Refs.[4,5], or in a flat one. 

The methcrl devt?lopecl supplements the matrix one I?]. 
(which calculates the impedance for an infinite 
periodic structure) being. actually, the analogy of the 
latter for nonperiodic structures, 

l.Problem Formulation 

A model of an accelerator vacuum chamber is conside- 
red: an infinite pipe having an inhomogeneity of length 
L. Let this system have an axial or flat geometry. The 
b$ary shape 1s given by the function r = b(z); 

= b at zI 3 L/Z. where b is the smooth-chamber 
radius (half-height) (Flg.1). We assume that this 
function is single-valued, I.e. one and only one point 
r = b(z) correspo;dz- to any z E (-,a!. 
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Fig.1. Layout of the problem. 

Let the current perturhntion wave travel along the 
chamber axis z: 

jz(z.r.t.1 = p(kol @c exp(ik*z-lwt) 8 (a-r), (11 

where w = @Ai,. a is the beam radius The solution to 
the Maxwellmequationr with current (1) is: 

x * x,. = ko/T; the factor ip(kolieoko is dropped out; 
nO 

the upper line in i...) corresponds to Ckria, the lower 
one to r>a and the functions g(x) and p(x) are: 

- 3n axisymmetric case 
g(x)=Io(xl: p(x)= -Xa(K, (~a!Io(x)+I,(~a)Ko(xl); (3a) 

- for flat geometry 
g(x) = ch x ; p(x) = -ch(x-xal. (3fi 

The unknown fuxtlon A(k) in Fqz.(Z) is determined 
from the barndary conditions on the chamber wall: 

[ 
EZ+b’ ~zl,Eg(lj)~~~ c;Hw]pb17; 0. (4) 

Here 8 = J 2,~(~ouw~ is the skin-depth and a is the 

cordilctivity of the wall material. Substituting field 
expressions (2) into Eq. (4), we get an integral 
equation for the function A(k). In particuiar, it is 
easily solved for a smooth pipe when b(z) c b: 

.ACO)(kI 1 6(k+ ;a 
-c 

(*l(kol = 

pcxbl-il+i)rps (Xb!/Xt; 
= 8 (k..kc,) .___ - _....- 

gcxbh-cl+i)~g~ (Xbl/Xb 
(5i 

where 7 and g are defined in (31 arxl ?l = 8/2b+(wb/c)'. 
Substituting E_ (21 into the longitudinal impedance 

(21. we split A(k) into A Co! !k) + F(k). where A(')(k) 
is defined by F&.:51. As a result we get 

iZ 
Z(w) = - - --.qja(0) 

2RiZ 

BkoS, 
Ckol-l) 

s 
dz - u ;F(koi. 161 

BkoS, 
The first term in RCLS of Q.(b), wh:ch 1~ pmpxtlt-j 

r!~l to the vacuun-chanber lemh Lcham=Jciz, 1s just the 

smooth-pipe impedance nrrc! the second one is the impedn- 
nce produced by the inhomogeneity itself. So, the inhcr- 
mcgeneity-produced impedance Z(w) is related to F(ko). 

2.The Inteqral Equation 

1. mtituting Fqs.(Z) into bourdajry condition 
with account of A(k) : 6(k-kOlal' (kol + F(k), 'z: 

obtain the following integral equation for F(k:: 
00 

s 
dke 

l(k-ko)z 
f[k,b(zl.b'(zllF(k: = q~b(zl.b'(zll, (7) 

-10 

where f[k.b(z).b'(z)l = g(Xkb(z)) - 

- g (x b(z;l/x bs (ib'(zlkb +Cl+i)qw); 

q[b(zl,b'(z)l = l/(g-(l+i)r)g'/x) * 

kOb * Wz-pzg+ib'(z)X(pZg-pgZ) +(l+il II x P,g'-P'gz+ [ 

+ib'i,i~~p,g'-p'g,1+~1p,g-,,,] } 

In E&.(71 the notations of l+.(Z) are used and x=Xb. 
p=p(xbl, g=g(xbl. P,= p(Xb(z)). gz= g(xb(z)l. 

'Ihe Ef+S of Eq.(71, q[b(zl,b'(zll. has the property 
that qtb.01 = 0. Hence, q[b(z),b'(zll = 0 holds for 
each z satisfying lz/>L/2. It follows that for a mth 
chamber, i.e., when b(z) = b. the solution to &l.(7) is 
trivial, F(kl = 0. The RHS q[b(zl.b'(zll can be easily 
expressed in an explicit form for a given symmetry. 

Eq.(71. the F'redholm equation of the 1st kiti, is an 
ill-posed problem [Sl and, besides, is inconvenient for 
a numerical solution. Its Fourier transform, with acco- 
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WT. cf b(z) = b when 121 > L/2, yleldz the 2rd kind in- 
tegral equation: co 

F(k) + 

In tiitch 
.j 

dk’ K(k.k’l F(k’) = R(k) , (8) 

L/2 

I 

->(k-k’jz (f[k’,b(z).b’(z)l-f[k’.b.Ol) 
K<k,k’) = dz e ~--__- 

27cf [k.b.Ol 
L/2 L/2 

R(k) = - 1 
s 

dz c 
-l(k-kolz 

q[b(z),b'(z)l (3: 
27cf[k,b,Ol 

-L/2 

This equation is more convenient both for a numerl- 
cal r;olutl”:1 and for an analytlca; study. So. it 1s 
easy to construct the perturbation expansion over the 
powers of the kernel K for the solntion of Eq.(8) by 
mearE of Iterations. If E = mux(b(z)/b-1) i< 1. an 
c-expansion can easily be obtnined ln analogy to what 
has hen do-z for perlcxllc structures I31. 

2. The tran5ltlcn from a single perturbntlon (FlQ.1) 
to N idtntllal equidlstnnt ones (Fig.2) is achieved by 

D D 
I 

*&CCL 

L 
- I -_ * - * -- . - . __ * -* 

z 
F1g.2. Group of identical equldlstant inhomcgene~tles. 

a slmp:e n,>ilflcatlon of the kernel ard WE of m. :8): 

KN(k,k’) = Q(k-k’) K, (k,k'l, 

FNiki = GN(k-ko) R, (k). 

where 

i 

sin xN1?/2 
, x7 + 2m 

cyx) =: Slrl xD/2 

N , XD = 2ml. In= 0, ?l 

K, ord R, are defined in Eq. (9) Note, that the matrix 

efluatlor~ of Ref. [71 IS obtained in the :imlt of N --t CD 

XNumerlcal Study of Integral Equntlon 

1 In some cases the kernel K and RHS R of Q.(8) can 
b? expre ssed In on analytic form. Eut even in such ii 
cm0 n numerIca ro1ut117n of the lnteqral equatlori 
SPCIX~ lnevltablc. For this purpcsc It 1s nccessarJ tc 
cut the lntqt-atlon over k’ up t.c a finite range, 
:k -Ak.k +&<I. We ch<xr;e cutTIff Cik y 2%tiimln(L,lzl. 0 Cl 
tiere x 1s a dlmenslonlesz p%ramcter. Then the lntcFa1 
equotlon 1s rcglaced by the follciwlng linear system: 

F’iki) t 1 ” wjK(kl.kj)F(k,) = Fi(ki). 1=1,. .M, ce’ I 
j=l I 

where w k are wclghts an1 Founts of N-pol;~t Gausslon J’ J 
quadrat-u-e on thp [ko-Ak,ko+Akl Interval. The irdepen- 

dcncc cf the results on the cutoff parameter ae and on 
the nu&er of subdivision points. M, is a criterion for 
the real& to be correct. Computations show thot the 
pragrorr. works well both ln the low frequency range and 
flor recorlar~e calculnt~ons. But when frequencies are 
much eve the cham&!r cut-off frequency, we must 
Integrate fost-qscillating functioric-:. The stidlvlsion 
pint number, M, has to be large ln this case and the 
matrix in F4.(8') becomes lll-deflned. Hence, at these 
fr-cquencies other, more refined. numeri ca 1 proccdur e:; 
should be used to solve the integral equation. 

Ihe computntlon time has the M2-deperxlence on the 
matrix size M ard 1s also proportional to the suizdlsion 

number N div of the I-L/2.1,/21 interval when the kernel 

and RHS term are calcuiated numerically. Typical compu- 
tation times (CFU ICL-1906A) for a single frequency 
are: for nnalytic kernel - 1-7s for M 6 32; for nume- 
rical kernel - 15s at M = 15 and Ndiv= 16 in the flat 

chamber and twice that In the cylindrical one. It is 
seen that kernel computation takes most of this time. 

Z.L,ow frequencies. Calculations show that at frcquen- 

ties, much lower than the chamber cut-off, Re Z(w) 1s 
related only to an increase of the wall surface. &en 
,y >> 1 and a -+ m, Im Z(W) is ncgatlve and proportional 
to frequency. So, both widening2 ati contractions of 
the chamber are irductive elements. If one denotes 
h = max (b(z)-b12then for h <i b the inductance beha- 
vcslikeImZah, andforh-b-ally as Im.7 UC h. 
The dependence on the perturbation length at fixed h IS 
as follows: ImZ(w) increases with L increase t111 
L $ b. and for large L it IS almost L-idependent. 

lQnpirica1 formulae for the itiuctance .C = ID Z(~JJ,)/W 
of some typical discontinuitles are 0bta:ned. For 0 
chamber cavity. which has a triamlar axial 
crossi;cctlon with base I, and height. h (h < b1, WC yet 

z c = O.!L!.sln jzj = z. 
2nc 0 

-.~*2t,,~ 
2nc B 

Here 9 is the nea2--borne angle. B 1s the width of a 
flat chamber and is replaced by rb in the case of a 
cylindrical chamber. For a chamber contraction havlry 

the same triangular cross-section. ,C = Zoh 2 /(2&J. 

The inductance for a couple of transItions of length 
1 from the cham&r radius b to that of the insertion. 
br-h or b-h. for 1 :< L,b turns out to be almost 
independent of the distance L between transItions. When 
I, > b. the lnductnnce produced by a wIderung of the 
chamber is equal to that of a contractlon with the same 
value of h. For L 2 2b. the value of the inductance 1s 

approximated by c = Zo!12G/,2cB1. 

It should in noted that ia paper (101 the low-freyu- 
envy impedance for some simple dlscontlnuitlcs has been 
studled with the help of the XXI cede 131. Tne results 
sbtalnai and empirical formulae are similar to our5. 

3.Resonances. As an example, we calculate resonances 

of the longitudinal impedance produced :n the flat 
chamber ulth b = 3cm and B = nb by a trlangular-shaped 
cavity with the length L = lcm along the beam 
direction. Figure 3 shows the results in the frequency 
rurqc up to 14 GHz for the case when this irsertlon haz 
the depth h = 0.5cm and the wall conductlvlty 15 
a = 1.43/(@~m!. In these computations. M = 32 nrd 
z = 2 have hen used. A typical resonance band-width 1s 
nea- 1 MHz. The resonance values of four lowest 
resonances vary with il--varlat Ion Cl3 shown In Flg.4. 
When h Increases. resonance frequcncler: dccl-ease 
monotanlcally but rather weakly, arKI they are quite 
near to the cut-off frequer,cies of different chamber 
modes, especially for small chamber perturbations. 

Unlike time-domain methods for impedance cnlculatl-- 
cons. which solve a nonstationary problem (the TX1 cc& 
being an example!, our approach does not give a picture 
of the bread-hnd impedance for a single dlscontlnulty 
at frequencies higher than the smooth cham!zer cut-cff 
frequency. It 1s quite natural due to the problem for- 
mulation itself, because we consider a statlonar~/ p~c- 
ture in the frequency domaln. Since an lnflnlte stru- 
ture is considered, the field energy 1s absorbed In the 
chamber walls. rather than icaks from the whole struc- 
tin-e. ‘l’hls suggests that the real part of the impedance 
vnnlshes In the limit of perfectly conductiq walls. 
1.e.. Re Z(W)= 0 for any w except for resonance frequ- 
cnc~cs. At the BME tune, Its IS known, thnt. It IS the 
cnervy leaking from the stmcturc at w > cd cut that 
Icads to the broad-band ~mpcdnncc In time-dnmaln 
calculations (RcZ(w) + 0 for eve,Y w j 0 

cut). 
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13b~iously. the nonstat:onary approach 1s adequate if 
fvl~ds ~nducr~~i by a particle bunch damp before the next 
b.inch ar--l"es, c I;. in LET?. -ihe h-and-hi& impo- dance 
picture IS quite adequate in this case. In the opposite 
cilx (WK. UC. SX) it 7s ncceasaiy t3 know a detailed 
impedance pattern or-d the stationary approach has to he 
:m?d in cnlcx~lotlon5. 
4 !hY II' of : :rlimxpne 1 t 1 es If~t ~,LT compu-e the imp-- 

dance frJ2r a single insertion with that for a set (of N 
eq~L:ld.lst.ant 1n.wrt. lOrE havlrrJ the same form. Th1:: 
comparison cali prcvidc us with information on impedance 
addlt~vlty. F1g.5 shows Im Z/N at frequency 10 MHx 
vcrSILLS N for ii vat-Iable distance D lzetween discon- 
tlnuities. tlcre L = lcm. h = 0.5cm ard b = 3cm are 
xkcn 20 vnluc of Rc Z/N is independent of N for any 
dlstancc I?. The picture shows that even at 1OW 

frequencies the impedances of different elements are 
additive 'only when the distance between them is 
sufflclcntly :arge (D > 2bl. So. the calculation of the 
low-freq.wncy impedance for bellow3 from the impcdancc 
loi: a single corrugntion, e.g. Ref ill], ylel& only on 
approximate answer. 

The resonant frequencies of the set of two ident:cal 
elements With L= lcm. h T 0.5cm ati h = 3cm differ 
only slightly from those in the CUSE of N = 1 icf 
Flg.3). However, the values of the resonances are 
strongly dependent on the distance D between elements. 
In Fig 6 the reduced values of impedance, Zpes/N, arc 
compared with those in the case of N = 1 ot dlfferent 
D's The rr;clllations Of 7. res/Ei me seen perfectly 

ConclLlslon 

Ihc integral-equation method for calculating the 
ctoup:ing impedance generalizes the matrix method [7] to 
nonpcriorilc structures. The above results show that the 

‘ 
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Pig.3 k?SMtanCeS ti fl%,tEnCY l-W@ Up to 14 G"Z CL - Ia,, b = 5 m 

P:g. 4 Valuas Of i-emnance6 ~rsua depth h Of lnsertlon for 
IOur lower resonances (see Pig.3). 

methcxi can be succensfully used to calculate the 
impedance for an arbitrary-shaped inhomcgeneity la&h at 
low frequencies and in the resonance region. 

This method can also be applied to calculate the 
tralmerse impedance in the same way as the matrix one 
[71. Unlike the longitudinal case. after suh;tItutirg 
fields into the boundary conditions we get a set of two 
coupled Integral equations instoad of integral equation 
(71 or (81. We do not present it here. 

As in the numerical solution of Fq(81 most of the 
CPU time is spent for computing the kernel, it seems to 
be promising to soive directly the 1st kind integral 
cquutlon. Eq.(71. becausa its kernel IS given in the 
eqlicrt anal~ytical form from the start. 

More detail and discussion can be found In Rcf.ilZl. 
The authors would like to thank V.i.BaZbekov 

for fruCtfu1 dCecuseCons and remarks. 
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Q-5 Im@ary part of lmpwlar~ce vwsw the number of 

lnhwgmeltles N for w-loua distances between them. 

Valuea Ior N . (D are obtalned by the matrix method 17:. 

E?idLV? = 6 

km 5.5 

mw1=5 
m 4.5 

mIv1=4 
m 3.5 

Emtvt = 3 

m 2.5 

ml)lt = 2 

Em 1.5 

m,"~ I * 
IN = 1 

1 2 3 4 

Plg.6 Values of remmces for rarlow distancea between 

lnsertlons for IOU- hwer pemnancB*. Dark co1mns: 
N * I. and llgbt ones: N - 2 for D/L . 1(0.5)6. 


