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Abstract

For high intensity beams dominated by space charge the
analysis in frequency domain and in real space and time
yield complementary information on the phase space den-
sity. In the frequency domain we compare measured noise
spectra of cooled heavy ion beams in the ESR with "sim-
ulation noise” obtained from computer simulation with
interacting particles. This is applied to the problem of
determining the phase space density from frequency mea-
surements. As an advanced method of real space and time
observation we discuss the first results of streak camera
imaging of cooled heavy ion beams extracted from the

ESR.

1 INTRODUCTION

There is a general interest to measure and optimize the
longitudinal and transverse phase space density of proton
or lon beams close to the limits caused by space charge
effects. In storage rings proposed for heavy ion inertial
fusion there is an interest to optimize the performance by
pushing both the longitudinal and transverse space charge
to their limits. In electron cooler rings maximum possible
density in 6D phase space is an issue of general interest. It
is particularly important for the challenging goal to achieve
crystalline beams, where the focusing forces are exactly
canceled by space charge forces.

2 MEASURED AND SIMULATED
SCHOTTKY NOISE SPECTRA

The statistical distribution of particles gives rise to current
fluctuations, which induce a voltage on & pick-up. The
Schottky power spectrum is proportional to the square
of the current fluctuations. For a coasting beam at low
phase space density it is therefore also proportional to the
momentum distribution function, since particles are com-
pletely uncorrelated in phase around the machine [1]. For
high phase space density there is coherent motion in the
form of waves, which leads to a strong amplification of the
noise signal at the coherent frequencies (see, for example,
(2, 3, 4]). For interpretation simnlation is needed to bridge
the gap between the simplified models of analytical theory
and real beams.

In computer simulation using particles fluctuations in
the density are obtained, which are analogous to the fluctu-
ations in real beams. We have studied this in the "particle-
in-cell” simulation program SCOP-RZ (Fig. 1). "Particle-
in-cell” refers to the technique of calculating the electro-

magnetic interaction of the beam by creating each time-
step a density function on a grid in r,z and solving Pois-
Addi-
tional forces due to rf cavity impedances, kickers etc. can
be included by using the measured impedance values times
the Fourier component of the line density.

The longitudinal simulation Schottky noeise is described
by the line density, which is recorded over a large number
of time steps and Fourier transformed. Smooth spectra

son's equation for an infinitely conducting pipe.

can be obtained by averaging as in the experiment.

In Fig. 2 we show simulation noise spectra for parame-
ters, which are typical for electron cooled heams in storage
rings. The spectra have the same characteristic features
as in the experiment: the left case corresponds to large
uncooled momentum spread, ie. Ap/p = 3 x 107* for a
2 mA Nel®* beam at 250 MeV/u; the right case to 10
times smaller cooled momentum spread. The momentum
distribution is Gaussian in both cases. The two peaks for
the cooled case are due to space charge waves moving with
the beam velocity rsp. against it. The splitting of the two
peaks and the central suppression can be related to the
phase space density as will be shown in the next section.

3 COHERENT AND INCOHERENT
OSCILLATIONS

3.1 Longitudinal - Coasting Beam

As mentioned above coherent oscillations dominate the
noise spectrum if the current is near or above the threshold
of the longitudinal microwave instability given by

Ap
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Here Zj/n is the total coupling impedance; for non-
relativistic energies it is in general dominated by the space
charge impedance Z)/n = —i377g¢/(287*) (Ohm), with
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Figure 1: Fluctuations of line density in simulation of

coasting beam with 8192 particles and 128 axial grid points
(Ncen = 64).
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Figure 2: Simulation noise spectrum for large (left) and 10
times smaller (right) momentum spread

the geometry factor ¢ = 0.5 + In%‘l for a uniform den-
sity beam with radius R; in a pipe of radius H,. The
above "Keil-Schnell criterion” indicates instability in very
general terms for currents above the threshold and in the
presence of a resistive (real) part of the impedance (be-
low transition energy). Instability according to Eq. 1 is
expected only for the special case of a quadratic momen-
tum distribution, whereas for a Gaussian the current can
About 5-10 times higher cur-
rents have been found in storage rings with electron cool-
ing [5, 6, 7]. It must be assumed that this is dne to the
enhanced Landau damping by the tails of the Gaussian

considerably exceed Ly, .

momentum distribution. This question is important for
leavy ion fusion storage rings, where one wants to store
currents typically a factor of 10 above Ly, [8].

Beam Plasma Frequency:

The dependence of the cohereiit frequency shift on the mo-

mentum spread for a beam of given current can be plotted
as a function of (Ap/p)?. In Fig. 3 we show this depen-
dence as calculated from the analytical dispersion relation
for a Gaussian momentum distribution. We have normal-
ized Aw = w — nwgy on the cold beam value (Ap/p = 0),
which is the "beam plasma frequency” given by
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Figure 3: Normalized coherent frequency shift and I/l
vs. normalized (Ap/p)? (dots r.h.s. case of Fig. 2.)

Ap/p is normalized on Ap/pis,, which is obtained from
Eq. 1 by setting I = Iip,. It is noted that (Aw)? increases
linearly for small {Ap/p)? to & maximum and drops again
near (Ap/p)in, when Landan damping suppresses the co-
herent motion. The linear increase of (Aw)? with (Ap/p)?
in the beam plasma has an analogy to the dispersion re-
lation of electron plasma waves in an infinite plasma with
finite temperature [9]:

3
(Aw)z = w; + Ekgvtzhunml (3)

where k is the wave number, wp2

=eln,/(egm) the plasma
frequency squared and n, the electron density. Hence
there is a density shift corresponding to Eq. 2 as well as a
temperature shift, which is actually a consequence of the
plasma pressure. The derivative with respect to k? allows
to measure directly the temperature.

This is unfortunately not the case for the "beam plasma
waves”, where the density shift Aw;, is also proportional
to k? = (n/R)?. Hence the graph of Fig. 3 is identical for
all n (below the cut-off wavelength). This is a consequence
of the electrostatic screening effect of the beam pipe for
long wave lengths, i.e. Z;/n is independent of n.

Longitudinal Phase Space Density Measurement:

The question is of interest how to determine I/lyy, from
the Schottky spectra (i.e. without a beam transfer func-
tion measurement). It is possible to determine Ap/p un-
ambiguously if we use an additional information. A refer-
ence point for evaluation is the case I/I;4,=0.5, for which
the Schottky spectrum has a plateau {10}, which can be
easily identified in the measurement. This transition from
a peak in the center to a dip is also the transition of sin-
gle particle to collective behaviour. For this special case
the true momentum spread (fwhm) is 0.6 times the mea-
sured one. In Fig. 3 we also plot the ratio of the Schottky
power at the band center (P.) normalized on its value for
I/Liny =05 (P, pratcas ). This ratio is only a function of
I/1ih, and independent of the precise shape of the distri-
bution function [10]. Hence we can determine I/l by
using the graph shown in Fig. 3. With Eq. 1 the momen-
tum spread results immediately from the corresponding
value for the plateau-like spectrum according to

Ap/p = (0_5‘[””/1')1/2 X (Ap/p)plntrnu (4)

3.2 Longitudinal - Bunched Beam

For bunched beams at low intensity the direct way to
determine the phase space density is a measurement of
the bunch length, which is proportional to the momentum
spread for a given rf potential V,. With space charge the
latter is reduced, resulting in an effective potential (" po-
tential well flattening”) and synchrotron frequency ws.
Here we introduce a dimensionless parameter a:

Vo  wi
a= = -S50

(5)

a))1 indicates strongly space charge dominated bunches.
We note that in heavy ion fusion storage rings o = 10 is
required.

Veps  wi
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Since V,;; is needed to determine the momentum spread
we could simply measure ws. In practice this is difficult
to measure on a spectrum analyzer due to the weakness
of the signal. An alternative is the quadrupole mode fre-
quency method [11]. The latter is based on the observa-
tion that the frequency of a coherent bunch length oscilla-
tion ("quadrupole mode”) is closely related to the incoher-
ent frequency shift Aw = wgy —ws. Analytical expressions
exist only for the "locally elliptic” phase space distribution
function, e.g.

f(z.8p/p) o (B ~ H)'/? (6)

with H the Hamiltonian. This distribution is consistent
with a parabolic bunch shape [13]. The coherent oscilla-
tion frequencies of it have been calculated in Ref. [13] for
the dipole (rigid displacement), quadrupole and sextupole
modes as

(M)

(8)
(9)
For small space charge shift one finds from Eq. 8 a linear
relationship

22
Wy = Wsp

2 2 2
wy = 3wgy + wg

wi = 3wgy + 2wi + (9‘*’2;0 + 3“’.%0“’% + 4“’%)1/2

1 Awg
Wz — wWsp = 5(“}50 - ws) =

; (10)

Note that the dipole mode is not changed by space charge,
which 15 not acting on the bunch center. The linearized
relationship Eq. 10 was therefore suggested in Ref. [11] as
an indirect way to determine wg. For larger space charge
effects the full expression of Fiq. B was recently applied to
electron cooled proton bunches leading to the conclusion
that high space charge was present (a =~ 4) [12].

Comparison Measurement - Simulation:
Eq. 8 can be re-written in the form

2
1
Bt B L (11)
wz [ 4
S50

The a-dependent term is the space charge shift, which
changes only little, if « is large. Hence a small uncer-
tainty in the quadrupole frequency results in a relatively
large error in o. Besides measurement errors the question
arises, whether the above theoretical frequencies derived
for a parabolic bunch are appropriate. Electron cooled
bunches actually are known to be Gaussian in shape rather
than parabolic (see also section 4).

In order to imvestignte possible ambiguities we have
directly measured w, as well as ws and wgy for Nelt
bunches in the ESR storage ring at an energy of 250
MeV/u. A typical example of the Schottky spectruin of a
cooled bunch with 3x10% particles and an rf voltage of 100
V is shown in Fig. 4 (Ref [14]).

Besides synchrotron satellites we have multiples of 50
Hz, which are presumably due to electronic coupling. Due
to space charge each sideband is split into several lines
for coherent and incoherent frequencies. In order to in-
crease the confidence in interpreting individual lines we
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Figure 4: Measured Schottky spectrum for bunched beam
with space charge effects (relevant satellites filled black).

have also calculnted the computer simulation noise. Re.
sults are shown in Fig. 5 for the same parameters as in
Fig. 4. The simulation shows the same splitting as the
experiment. The height of sidebands is expected to differ,
depending on the initial excitation. Relevant frequencies
in Fig. 4 are wg9=230 Hz, ws=185 Hz (as well as twice
these frequencies), w; =428 Hz.

From Eq. 5 we calculate @ as 1.6 in this example, hence
40% of the applied rf voltage is compensated by space
charge.

The findings from experiment, simulation noise and the
above analytical formulae are compared in Fig. 6. The
agreement between analytical theory and simulation noise
with the distribution function of Eq 6 is excellent. The
measured w; values are, however, systematically lower
than the calculated ones. If we had used Eq. 11, a would
have resulted nearly 40-50% larger than the true value.
The uncertainty might even increase at larger values of a.
A possible direction to explain this is a different longitu-
dinal phase space distribution in the real beam. This is
confirmed in section 4, where a Maxwellian is suggested.
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Figure 5: Simulation noise for parameters of Fig. 4.
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Figure 6: Comparison of space charge effects on longitudi-
nal bunch spectrum between experiment (dots), simulation
noise (squares) and analytical formulae (lines).

3.3 Transverse Phase Space Density

As in the longitudinal case, a direct measurement of the
incoherent tune shift is difficult due to the weak signals.
One can try to measure again a coherent quadrupole oscil-
lation frequency shift, which also reflects the space charge
density. In a round cross section beam (with symmetric
focusing strength) there are two such "envelope” modes”:
a "breathing mode” leaving the beam symmetric and an
antisymmetric "deformation mode” leaving the density un-
changed. For this special case one easily finds from the KV
- envelope equations simple expressions for the quadrupole
mode tunes in terms of the incoherent tune shift AQ;,.:

Asz, = 2 Q[) - :‘;‘AQinc (12)

AQZ,a =2 QO - AQin.r (13)

It should be noted here that in the absence of space charge
the gquadrupole tunes are simply 2 Q9. More generally the
tune shifts are calculated numerically from the KV - en-
velope equations. As an example we show in Fig. 7 a
calculation for different horizontal tunes and emittances:
Qon =429, Qp, = 3.29, ¢, = 2007, ¢, = 507. The mea-
surement requires an appropriate pickup to detect the os-
cillation. While the dipole frequency (unaffected by space

charge) is measured by the difference signal of two opposite
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Figure 7: Quadrupole tune shifts for different emittances.

plates, the quadrupole mode requires the difference signal
of two plates 90° apart. Contrary to the dipole mode the
signal decnys strongly with the distance from the beam.

4 3-D DIAGNOSTICS

For high-current beam dynamics studies we have imple-
mented a streak camera ns a new method of diagnostics in
the environment of an ion beam storage ring. The narrow
slit of the streak camera is directed on a fast plastic scin-
tillator, which is hit by the beam in the reinjection line
between the ESR and 5IS. The streaking of the image al-
lows to represent the horizontal density profile vs. time
at a resolution of about 2 ns. Quantitative evaluation re-
quires to avoid saturation of the scintillator by creating
large enough spots (see also Ref. [15]. This diagnostic thus
allows measurements simultaneously in time and in either
horizontal or vertical direction.

4.1 Stationary Bunches in Cooling Equilibrium

Measurements are shown here for C** bunches (harmonic
2) at 250 MeV/u in equilibrium with the electron cooling
for a circulating ion current of 0.13 mA. The horizontal
beam profile at the bunch center as well as the time profile
along the main axis of the bunch have been determined to
be close to Gaussian. Results are shown in Fig. 8, where
the data are fit with a Gaussian plus a constant back-
ground. At times and positions other than those of the
bunch center, the time and position profiles are also Gaus-
sian.

3-D Equilibrium Distribution:
Evaluation of horizontal profiles at different times allows
to determine the horizontal emittance along the bunch (in
absolute units, if the beta-function is determined at the
scintillator). We found that the bunch size rsp. emittance
is constant along the bunch (Fig. 9). With the Gaussian
bunch current profile this result is fundamentally different

from the coasting beam scaling for intrabeam scattering,
€ o« I, with ¢ =~ 0.5 [16].
be seen in the synchrotron motion, which moves particles

The reason for this should
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Figure 8 Streak camera image of C®*' bunch with time
profile and horizontal profile through bunch center.
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Figure 9: Measured emittance and space charge tune shift
vs. time for bunch of Fig. 8.

throughout the bunch in a time, which is short compared
with the scattering time.

The Gaussian densities and constant emittance suggest
to use a "two-temperature” Maxwellian distribution to de-
scribe the bunches in equilibrium with electron cooling, i.e.

(14)

with decoupled Hamiltonians for the parallel (z) and trans-
verse phase space, and with independent temperatures.
The Maxwellian has temperatures independent from po-
sitions, which is equivalent to constant angular spread
(hence emittance) and momentum spread. Densities are
Gaussian as long as the potentials are harmonic, or near
harmonic (o not too large).

Space Charge Tune Shift:
The bunch current and horizontal and vertical rms sizes
resolved along the bunch can be used to calculate the inco-
herent tune mhifts along the bunch. For a round beam the
density measurement on the bunch axis gives directly the
variation of the incoherent tune shift for small betatron
amplitudes due to

f x CXp(~H”/kT") X CXp(—HJ_/kTJ_)

= d

AQITY « E—E,(r =0,z) xn(r =0,2) (18)
r

The asumption of roundness (in the time average) is ap-

proximately satisfied for electron cooled bunches, hence

Eq. 15 is applicable (Fig. 9).

4.2 Instability Studies

The relevance of streak camera observation for bunch in-
stabilities is shown in the following example. For circulat-
ing currents exceeding approximately 2 mA (i.e. more than
10 mA peak currents) it was observed that the bunches
are periodically unstable. On the DSA a double-humped,
broadened bunch profile was observed. After typically a
second of cooling sharp bunch profiles were re-established
and quickly broadened, and so on. In Fig. 10 a streak im-
age is shown for a bunch extracted in the middle of an un-
stable phase. The observation of simultaneous blow-up of
momentum spread and emittance suggests that the cooling
mechanism plays an important role in driving the instabil-
ity, We assume that the variation of the ion beam space

Figure 10: Unstable phase of intense bunches (harmonic
2) with electron cooling showing equidensity contours.

charge along the bunch leads to a variation of the electron
cooler energy and thus a dynamical mismatch between rf
frequency and electron velocities. Quantitatively we find
approximately 0.5 Volts of energy change per mA of ion
current. This is equivalent to a shift of Ap/p of 2 x 1075,
by which the optimum of electron cooling is pushed away
from the bunch center. It remains to be clarified whether
other destabilizing mechanisms contribute also to this ob-
servation.
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