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Abstract 

The measured dynamic aperture of the HERA proton 
ring and the value expected from simulation studies agree 
within a factor of 2. A better agreement is achieved if a re- 
alistic tune modulat,ion is included in the simulation. The 
approximate threshold of tune-modulation induced diffu- 
sion can be calculated analytically. Its value is in remark- 
able agreement with the dynamic aperture measured. The 
calculation is based on parameters of resonances through 
order 11 which are comput,ed using differential-algebra 
methods and normal-form algorithms. Modulational diffu- 
sion in conjunction with drifting machine parameters ap- 
pears to be the most important transverse diffusion pro- 
cess. 

1 INTRODUCTION 

Dynamic aperture and transverse particle diffusion rates 
are an important concern in the design and operation of 
large hadron storage rings. At injection energy, nonlin- 
ear persistent-current field errors in the superconducting 
magnets limit the dynamic aperture of the HERA proton 
ring, which is the second superconducting storage ring in 
operation. In this report, simulation studies and an an- 
alytical est,imat,ca of the dynamic apert,ure are compared 
with observations from the first t,wo years of operation. 

Section 2 describes the model of HER.4 used in the simu- 
lation and techniques of tracking data analysis. Section 3 is 
devoted t,o a comparison of the dynamic aperture measured 
with that expected from tracking. An analytical study 
of high-order resonances in the presence of tune modu- 
lation and an approach to calculate amplitude-dependent 
diffusion rates are discussed in Section 4. The results are 
summarized and some conclusions are drawn in Section 5. 
This report focuses on the main ideas. For more details 
see 11, 2, 31. 

2 TRACKING SIMULATIONS 

2.1 Model of HERA 

The main circuit of the HERA proton ring comprises 
about 400 superconducting dipole magnets and 200 S.C. 
quadrupoles. A single FODO cell contains four dipoles 
and has a length of 47 m. Quadrupole and sextupole cor- 
rections coils are wound upon the beam pipe along 2/3 of 
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the length of each dipole to control tune and chromatic- 
ity [4]. Every second dipole magnet is equipped with a 
decapole correction coil, and dodecapole correctors are in- 
stalled inside the main quadrupoles to locally compensate 
the largest systematic multipole components [5]. 

The normal and skew multipole components through 32- 
poles have been measured for each of the S.C. HERA mag- 
nets. In the simulation, the individual rnultipolc compo- 
nents up to 20-poles of all S.C. dipoles and quatirllpoles are 
taken into account by five thin, higher-order lenses in each 
FODO half cell. The strengths of the 6-, lO- and 12-p& 
correctors, independently powered in each quadrant, are 
added to the individual multipole coefficients of a magnet. 
This model of HERA is a very good approximation to the 
real machine. 

2.2 Early Indicators of unstable TYajectories 
The minimum time needed to inject 210 bunches into the 
HER.4 proton ring is about 20 minutes, corresponding to 
6 . 10’ turns. A typical number of turns in the tracking 
studies is lo*, which requires about 15 minutes CPU time 
on an IBM 9000-720. using the computer codes RACE- 
TRACK and SIXTRACK [6:. Reliable criteria for ear!:, 
detection of unstable trajectories are, therefore, indispens- 
able. A promising method consists of det,ermining the rat? 
of divergence of two initially close trajectories in phase 
space [7], which is characterized by the Lyapunov cxponcnt 
and is a well established concept in the theory of nonlinear 
dynamics [8]. -4 trajectory is either regular or chaotic. For 
regular motion the distance d in phase space between two 
tracks grows linearly with the number of turns N: 

d(h’) 0: N, (1) 

when averaged over long periods of time. Chaotic motion 
is characterized by an exponential growth of this distance: 

d(N) cy eXN, (2) 

where X is the Lyapunov exponent. Its formal definition is 

1 4h’) X = lim lim -Indo. 
N--m d(O)-0 .v 

(3) 

The main reason for the calculation of Lyapunov expo- 
nents in tracking studies is that chaotic particles are poten- 
tially unstable and may experience an amplitude growth 
on a longer time scale. An amplitude increase for chaotic 
trajectories, and only for those, has indeed been found over 
a lo-100 times larger number of turns [l]. 
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Figure 1: Dynamic aperture in the HERA proton ring: the 
dynamic aperture I‘ expected from simulation studies, T E 
(20(3; + I,))$ with /3 = 76 m, as a function of the amplitude 
of momentum oscillations Ap/p, the two-sigma beam size, and 
the actual dynamic aperture. The range depicted for the latter 
refers t,o the variation observed over periods of days or weeks. 

3 PREDICTED AND MEASURED 
DYNAMIC APERTURE 

The predicted and the measured dynamic aperture of the 
HERA proton ring are shown in Fig. 1, as a function of 
the amplitude of momentum oscillation Ap/p. The upper 
dotted line represents the border above which particles are 
lost within 2 10” turns in the simuiation. The amplitude 
at which the onset of chaotic particle motion is detected by 
t.hc Lyapunov exponent method using lo4 turns is about 
30 % smaller (18 mm at p = 76 m for Ap/p M 0). This 
amplitude was supposed to give a conservative estimate of 
the actual dynamic aperture. 

In 1991/92, the physical aperture, determined by means 
of orthogonal orbit bumps. was about 14 mm (p = 
76 mm). Beam profile measurements with the residual 
gas monitors (91, performed after bad injection or excita- 
tion, show that the dynamic aperture is only 8.5-11 mm 
and, hence, is considerably smaller than both the physi- 
cal aperture and the value expected from the simulation 
(see Fig. 1). It turned out to be sufficient for stable beam 
operation. 

While measurement and prediction agree within a fac- 
tor of 2, their difference is too large to be explained by 
uncert.ainties in the field errors, beam orbits, and the like. 
Rather, the difference indicates that some physical effect’ 
has been omitted in the simulation. 

Two effects that have not been considered are tune mod- 
ulation and slow drifts of parameters. Current ripple in the 
superconducting main circuit causes a tune modulation of 
frequency 50 Hz and of amplitude 5 1O-5-1O-4 (quoted in 
units of the revolution frequency 47 kHz) [l]. Figure 1 in- 
dicates a strong impact of longitudinal oscillations on the 
dynamic aperture. The effect of synchrotron oscillations 

and nonzero chromaticity can to first order be understood 
by the accompanying tune modulation in the transverse 
phase space. -4 typical modulation amplitude amounts to 
2. lo-“, and the synchrotron frequency is about 20 Hz. 

When in addition to the nonlinear field errors a realistic 
tune modulation (of amplitude q M 10d4 at a frequency 
of 50 Hz as that due to magnet current ripple) is also in- 
cluded in the simulation model, the dynamic aperture for 
on-momentum particles is considerably reduced [l], and 
chaotic trajectories are found close to the actual dynamic 
aperture. In this case, the chaotic trajectories at ampli- 
tudes between 10 and 16 mm are interspersed among reg- 
ular regions of phase space, so that tune modulation alone 
is not sufficient to cause a loss of all particles in this am- 
plitude range. To account for the latter, additional slow 
drifts of the machine parameters are required which alter 
the position of chaotic regions in phase space and thereby 
convert previously regular particles into chaotic ones and 
vice versa. A continuous drift of parameters is caused. 
for instance, by low-frequency quadrupole vibrations, by 
the spread of persistent-current sextupole decay [lo] and 
by temperature changes of magnets and power supplies. 
From Fig. 2 a tune change by low4 causes a position 
change of resonances and chaotic regions in phase space 
by ]A1,,,! N 0.02 mm mrad (I,,, is the action variable). 
Neither the total impact of low-frequency tune modula- 
tion or synchrot,ron oscillations, nor the additional effect 
of parameter drifts can be reliably estimated by tracking 
studies for 104 turns. Here, an analytical treatment offers 
more insight. 

4 ANALYTICAL TREATMENT 

4. I Res011ances and Tune Modulation 

The transverse phase space of HERA is covered by a web 
of weak, isolated resonance islands. Close t,o one of these 
resonances, lcQz + lQz zz p, the transverse motion is well 
described by the nonlinear Hamiltonian 

If(L, I,, &, @z, Q) = IrQso + IrQzo + d1r! Iz) -L 

+h(J,, 1,) cos(&b + 14, -PO) + 

+q (r, + I*) . cos(Q,B - a), (4) 

where t,he last, term represents a tune modulation of am- 
plitude Q and frequency Qm in both transverse planes and 
a an init,ial phase. The terms 1, and I, designate the 
horizontal and vertical action, respectively; 4, and $I are 
the corresponding angle variables; and B denotes the az- 
imuthal position around the storage ring. The function h 
is called driving term. It determines the strength of the 
resonance and, for HERA: is typically much smaller than 
the detuning term g [I]. 

Differential-algebra methods in conjunction with 
normal-form algorithms [ll] provide an efficient way to 
compute the Hamilt,onian (4). Care has to be taken, how- 
ever, since resonances of order lower than 11 may cause a 
divergence of the normal-form transformation. One possi- 
ble approach 111 is to first perform an eighth order normal- 
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Figure 2: IIorizontal tune Qz obtained from tracking and from 
different normalization schemes i*5 a function of amplitude T E 
(2/Y&)$, (a = 76 “1, I* = 0). 

ization and then to rewrite the remainder as a Dragt-Finn 
factorization [12]. The original map -41, extracted from 
the HERA model, is then cast into the following form: 

hp = A-‘e:-2”Q’+t,(I)+...+~a(I!:e:fs(r,~): . 

. . ,:ef~l(~d):A + 0(12)> (5) 

where the t, and fn are polynomials of degree n in y = 
,/qcos&,, andp, = -t&sin6y (y = z,z). The A de- 
notes the eighth order normal-form transformation. The 
tunes are given by the first partial derivatives with respect 
to I,,* of the approximate Hamiltonian 

H approx = A-‘(QI - ${tz(I) + + b(I) i 

+ < fs(I,d) +. . . + Ill’(h) >$)I. (6) 

Here, the angular brackets indicate an average over $,,,. 
Tune curves obtained by this method and those from an 
eighth and an eleventh order normal-form analysis are 
compared with the tracking data in Fig. 2. The diver- 
gence of the eleventh order normal-form analysis and the 
shortcoming of an eighth order normalization are evident, 
while the combination of a normal-form transformation 
and a Dragt-Finn factorization reproduces the amplitude- 
dependent tunes up to the threshold of chaotic motion 
found in the simulations without tune modulation. 

To identify the relevant high-order resonances the 
amplitude-dependent tunes are depicted for t,hree differ- 
ent working points in Fig. 3. It is possible to identify 28 
resonances of order 7 to 11, which are crossed by the tune, 
if the starting action is changed continuously from 0 to 2 
mm mrad along the three lines I, = 0, 1, = 0, and 1, = 1,. 
In the following, we will use this set of resonances [I] to 
determine typical values of certain quantities. 

The Hamiltonian (4), whose contour lines form an island 
structure in phase space, can be further approximat,ed by 
a nonlinear pendulum [13]. The pendulum motion is char- 
acterized by two parameters: the island width Al,,, and 
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Figure 3: Diagram of the amplitude-dependent particle tunes 
and of all resonance lines up to order 11. The numbered dots in- 
dicate tunes for special values of the starting actions, (I=, I*)= 
1) (0:O); 2) (0,2); 3) (2,O): 4) (2,2), in units of mm mrad. The 
connecting lines correspond to a continuous variation of the 
initial action between these values. The squares, circles, and 
triangles refer to three different working points. 
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Figure 4: Total island width Al tot as a function of the resonant 
action I E I, + I,. The curve represents the parametrization 
4[,“, = 2.4 10m314(mm mrad)-3. 

the is!antl tune Qr. The former describes the size of the 
island in action space Al,,, z (,A12 + A12)3 and reads 

(12 + k2)h i 
AI,,, = 4 

11’3 + 2kE& + 
(7) 

Figure 4 shows the island width Altot for the al)ovc, set 
of high-order resonances. Note that the resonances repre- 
sented in the picture are encountered for different working 
points and along different lines in tune space and that 
a typical separation of resonances along one line is 0.51 
mm mrad, so that the resonance overlap criterion 1131 is 
fulfilled only for I 2 4 mm mrad (or T > 25 mm). 

The second parameter-the island tune Qf-designates 
the frequency at which particles inside a resonance island 
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Figure 5: Absolute width of stochastic layer AI,,, “w.1 as a 
function of the resonant action I E I, + 1,. -4 tune modula- 
tion flmplitude of * w 5 low5 at a frequency of 50 I-12 is as- 
sumed. The curve represents the parametrization ~1.1 AI,,, N 
10-lI”(rnm mrad)-4. 

oscillate around the elliptic fixed point [14]. It is given by 

QI = k2$ + 2kZ& 03) 
2 z L 

evaluated at the resonance. The island tune for resonances 
through order 11 varies between 3. lo-l5 (lo-” Hz) at 
\ver)- small amplitudes and 5 I lo-* (25 Hz) for amplitudes 
of about 23 mm (p = 76 m) [l]. Resonance islands are 
most sensitive to an external tune modulation at frequen- 
cies close t.o the island frequency. In contrast, they are 
almost undisturbed by high-frequency perturbations (i.e., 
f > 100 Hz). The fraction of the resonance island w,~ 
which becomes chaotic under the influence of a tune mod- 
ulation of amplitude q and frequency Q,,, can be derived 
explicitly and. within a factor of 2, is given by [13, l] 

W,I = xlk + Q&it,/ (2Q; cash bQ,PQd) . (9) 

In Fig. 5 the absolute width of the chaotic layer w,lAl,,, 
is depicted for each resonance, again as a function of the 
action I. Comparison with Fig. 4 shows that up to 10% 
of a resonance island can become chaotic. For about half 
of the resonances of Fig. 4, however, the stochastic width 
is insignificant. In particular, it is negligibly small at reso- 
nant action values below 10 x 0.8 mm mrad (r x 11 mm). 
This 10 apprdxirnatcs the threshold for tune-modulation 
induced diffusion, independently of the exact details of 
the diffusion mechanism, and its value is in remarkable 
agreement with the dynamic acceptance measured. 

4.2 Diffusion Rates 
A concept complement,ary to the dynamic apert,ure is the 
amplitude-dependent diffusion rate, which is very impor- 
tant for background considerations and for experiments 
in the beam halo. A possible semi-analytical scheme for 
evaluating macroscopic (i.e., measurable) diffusion rates 
contains the following basic ingredients: 

1. the parameters of isolated, high-order resonances, 

2. 

3. 

A 

local diffusion rates in the vicinity of a single reso- 
nance, and 

a method to combine the local diffusion rates at each 
resonance into a macroscopic ‘global’ diffusion rate, 
which may be compared with measurements. 

diffusion equatibn was successfully applied 
to parametrize the beam profile evolution in the Fermi- 
lab Tevatron 1151 and is routinely employed to analyze the 
transverse drift rates measured with the HERA collimator 
system [16]. A diffusion equation for the total transverse 
action I = I, + 1, is of the form 

aflat =a/a~. (ql)af/ar), UO! 

where f denotes the distribution function. The diffusion 
coefficient D(I) is related to the squared action change per 
tirnc interval by the formula [l] 

D(I) = ((A1)2/(2At)). (11) 

Here, the bar indicates the mean over a particle ensemble. 
An approach to calculating the ‘global’ diffusion coefficient 
D(I) consists of averaging the local diffusion rates describ- 
ing motion close to a single resonance over the region be- 
tween two adjacent resonances. This average, indicated 
by the angular brackets in (ll), can be motivated by a 
continuous slow drift of resonance islands in phase space. 
Several mechanisms can cause a local diffusion of particles: 

The effect of an external diffusion (for instance gas 
scattering) can be considerably increased in the vicin- 
ity of a resonance if the resonance island and the is- 
land tune are sufficiently large and if the angle in ac- 
tion space between energy surface and resonance con- 
tour is small. The enhanced diffusion is known as 
resonance streaming 117, 181. 

Particles inside the thin stochastic layer which is gen- 
erated by tune modulation around the separatrix of 
a primary resonance may diffuse along the resonance 
contour under the influence of a second resonance, 
which is an example of Anzold difl~sion (13, 181. 

If the machine parameters were kept constant, the 
strong diffusion of particles across the chaotic layer 
would have no measurable effect. Since the tunes 
change continuously, however, the resonance islands 
are altering their position in the four dimensional 
phase space, and individual particles will follow a suc- 
cession of regular and chaotic trajectory segments. A 
measurable diffusion rate called sweeping &&ion is 
the result [2]. 

A tune modulation of small modulation frequency Q,,, 
and large amplitude q generates a strongly chaotic 
band of overlapping sideband resonances. Particles 
inside this ‘modulational layer’ can be driven along 
the resonance contour by another resonance. This 
mechanism is known as modulation d@tision [19, 181. 
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Figure 0: Comparison of diffusion coefficients computed for 
diflerent types of nonlinear transport mechanisms and for gas 
scattering (err? = 2. lo-’ mbar) as a function of action [2]. 

The diffusion processes a-d are locally described by a 
Fokker-Planck equation in the action variabie [18, 17, 13, 
19, 21. If the motion is Hamiltonian, the Fokker-Planck 
equation reduces to a diffusion equation with action- 
dependent coefficients [18: l]. Thus, it is not too surpris- 
ing that a diffusion equation also parametrizes the macro- 
scopic behavior as reflected in beam profile and back- 
ground. 

Figure 6 compares the relative significance of different 
diffusion processes [2]. The figure shows that modulational 
diffusion is t,he dominant transport process and that its as- 
sociated diffusion rate exhibits a steep increase as a func- 
tion of amplitude. The latter was calculated assuming that 
the particles are driven along the modulational layer under 
the action of the linear coupling resonance Qz - Qz = -1, 

H coupl(L Iz! = &!I? cos(& - fjZ + 0 +x0), (12) 

where the parameter K z 0.005 corresponds to the mini- 
mum distance of the measured tunes as a function of nom- 
inal tunes [21], and x0 is an initial phase. 

The estimated diffusion rate agrees qualitatively with 
the observation, but is too small by six or seven orders 
of magnitude to explain the measured dynamic aperture. 
This discrepancy may be ascribed to resonances of order 
higher than 11, omitted in the analytical calculation, or 
to a difhlsion mechanism different from those considered 
here. 

5 SUMMARY AND CONCLUSIONS 

For tracking calculations and analytical studies a very de- 
tailed model of t,he HERA proton ring is available, which 
includes the measured field errors up to 20-poles for each 
individual magnet.’ The dynamic aperture predicted by 
simulations and the measured value agree within a factor 

of 2. A better agreement is achieved if tlie effect of tune 
modulation is also considered: for a realistic tune modu- 
lation, chaotic trajectories are theoretically expected, and 
indeed are observed in the simulation, at amplitudes very 
close to the actual dynamic aperture. The dynamic aper- 
ture in HERA appears to be caused by the combined effects 
of nonlinear field errors, tune modulation, and drifting ma- 
chine paramet,ers. 
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