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Abstract

The stability of short laser pulses propagating through
plasma channels is investigated theoretically. Perturba-
tions to the laser pulse are shown to perturb the pondero-
motive pressure, which modifies the dielectric properties of
the plasma channel. The channel perturbation then fur-
ther distorts the laser pulse. Mechanisms for suppressing
the instability are discussed.

1 INTRODUCTION

The stable propagation of laser pulses in underdense plas-
mas is fundamental to the development of laser wake-field
accelerators. The laser pulses must be focused to a small
spot size in order to generate a large amplitude plasma
wave, and, thereby, a high accelerating gradient [1]. The
laser will, in free space, be focused only over a diffrac-
tion length Z, = we?/2c, where w is the laser frequency,
c the speed of light, and ¢ the laser waist at the focus.
A homogeneous plasma, which has a dielectric constant
€ =1- ugu/wQ, where wpp = 4me’ng/m is the electron
plasma frequency, —e¢ the electron charge, m the electron
rest mass, and ng the plasma density, will only enhance
the tendency of the light to diffract. To achieve a net
acceleration of, say, 10 GeV, will require, with present ter-
awatt lasers, propagation lengths of order 10-20 Rayleigh
ranges, and TeV accelerators using a single laser would re-
quire hundreds of Rayleigh lengths. For overall efficiency
reasons, the propagation lengths must be long enough for
a substantial fraction of the laser energy to be converted
into plasma oscillation. This will require propagation over
many diffraction lengths.

Several schemes have been proposed to overcome diffrac-
tion. Relativistic guiding [2] relies on the energy de-

pendence of the plasma frequency, wf, = wgo/'y, where

v = /1 +p-p/mic?. The electron momentum | 7| will be
largest where the laser pulse is most intense, and therefore
the plasma frequency will be lower there, and the pulse will
generate a nonlinear index of refraction which is larger at
the center of the pulse than at the pulse edges. Analysis
has shown that, in steady-state, relativistic guiding can
focus the pulse whenever the total power is greater than
P, = 16.2{w/w,)? GW.

For pulses of order a plasma wavelength, however, rela-
tivistic guiding is substantially reduced [3]. An alternate
scheme envisions guiding the laser pulse in a plasma den-
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sity channel. The channel has a higher density on the
outside than on the inside, resulting in an index of refrac-
tion of the plasma which decreases from the channel axis
(due to the increase in plasma density). A fixed plasma
channel is analogous to an optical fiber, and its guiding
properties can be similarly analyzed. The plasma channel
can be used to guide short pulses, and has been studied us-
ing axisymmetric models for parabolic density variation [3]
and for hollow channels [4].

‘This paper considers the dynamic stability of channel
guided pulses in the presence of plasma wakes. A pertur-
bation to the guided equilibrium leads, through the pon-
deromotive force, to a plasma density perturbation which,
in turn, couples back to the perturbed field. Thus, the
plasma couples different longitudinal slices of the laser
pulse. For example, a transverse instability of channel
guided pulses occurs when the laser pulse is initially not
centered on the channel axis. The underlying physics is
straightforward: the off-centered laser produces a pondero-
motive force with a dipole component; this causes the sur-
rounding plasma electrons to try to follow the laser pulse.
Thus the shape of the channel is distorted and its guiding
properties are perturbed. There will be a coupling between
higher order multipoles, so that the back of the laser pulse
will widen.

2 THEORETICAL MODEL

With a quadratic density variation, the problem can be
solved exactly. The physical model consists of a preformed
neutral plasma channel with an unperturbed density given
by
2
2

Wil (1

’!lg(fi) - flo(l +
where »° = z? + y®. Since the duration of the laser
pulse is assumed to be short compared to 2w /wp;, where
wpzi = 4me’fi,/m;, the ions can be considered immobile.
Furthermore, the laser frequency is much larger than the
plasma frequency, so that the evolution of the laser pulse,
caused by the electron density wake, occurs on a time-scale
much longer than the laser period. Thus, we consider an
averaged (over a laser period), slow time-scale, weakly rel-
ativistic equation of motion for plasma electrons under the
influence of the ponderomotive force of the laser field.

A fluid model, which is applicable before wave-breaking
has occurred, is adequate to describe the plasma evolution
for the short pulse duration of interest here. In particu-
lar, a plasma electron must have a thermal velocity in the
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plasma must be much less than its oscillatory velocity in
the laser.

The channel density is taken to vary over a distance
much larger than collisionless plasma skin-depth, so that
K = ¢/@,W < 1. Then, as shown below, the unperturbed
laser pulse has a spotsize 2w = 2\/We/w, < W, so that
the density does not vary appreciably in the region where
the ponderomotive force is nonzero.

We consider a circularly polarized radiation field A=
mec?d/e, where

. 1 s . : :
a= §(a(‘zi, 2. ))(éx + 1€y ) exp (i(kyz —wot)) + cc. (2)
Introducing the variables s = ¢t — 2/vy0, 2 = 2, and

using the eikonal approximation, the weakly relativistic
limit (| @ [*< 1), and w;: & w? results in

2 2 2
Wy g2 2 Y [ la] e _
(cz ki + V1 o (1 5 +sz62 a=0,

(3)
where vg/¢ = koc/wo. The amplitude is expanded as the
sum of the unperturbed guided laser pulse and a pertur-
bation driven by the generation of plasma density modu-
lations: a(&1,2,t) = ao(ZL,s) + a1(F1,s,z). We use the
dimensionless transverse coordinates ¥ = z/w,§ = y/u,
and V = wV. Retaining leading order terms in Eq. 3 then
results in

2 -2
= o = wj w -
(=V2 4+ #)ag(s,7L) = w? (0—3 — k2~ ;-g aog(s,ZL).

(4)
Since the primary concern in this paper is guiding by a
channel and not relativistic self-focusing, we will assume
that the laser power is below the self-focusing threshold £,.
This allowed us to neglect the nonlinear terms in Eq.(4).

The calculation proceeds by linearizing Eq.(3) and ex-
panding the perturbation a, in a complete set of transverse
eigenfunctions ¢]' which can be expressed, in cylindrical
coordinates (r,#), as

YT (r, 0) = exp (=72 J2)F LT (7)) exp (imf),  (5)

where LT are the modified Laguerre polynomials [5].
The unperturbed equilibrium profile a¢ can be taken as

ao(s, 2,71 ) = ao(s) exp (—7%/2), {6)
which corresponds to the lowest (m = 0,n = 0) eigenfunc-
tion.

The equation for the perturbed field is

- e, w? én
2 2 a2 - 2
(24 V1 —7) + 2tkw az]alw. ;2 w <n0 —b) ag. (7)

where b = (aja; — aga})/2
The equation for the density modulation én is given

by [6]: 5 s
o 2 91 _ 2o
(5t2 +wp0) e = c*V*b. (8)
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Equation (8) for én/ng can be broken into a longitudinal
and a transverse piece by use of the quasistatic approxi-
mation, cZVﬁ ~ 82/0s%.

Changing Eq. (8) into an integral equation, integrating
twice by parts, and inserting the resulting expression for
(én/no) into Eq.(T7), yields

('2 + Vi — 4 Qisz-;-) ar(s) =

ao(s)/ wpods' sinwpo(s — s") (Vi - %—) b(s',z). (9)

Here both ap and a; are implicitly assumed to depend on
Zy.

The fundamental has m = 0, so that perturbed modes
with differing azimuthal numbers are decoupled. Thus, we
can concentrate on the evolution of a particular azimuthal
mode with an arbitrary radial profile. This profile can be
decomposed as a weighted sum of radial eigenmodes with
the same azimuthal mode number:

aly(EL,2,8) =Y aR(z,8) T (7, 0). (10)
n=0

It is convenient to introduce dimensionless time and
space coordinates, normalizing them to a plasma period
and Rayleigh length, respectively: § = wpes, z = z/kw?
and to set b7 = Goa* + ahalt. Then multiplying Eq.(9)
and its complex conjugate by ¢ (r,#), integrating over
the transverse dimensions and making use of the orthogo-
nality condition for Laguerre polynomials [5] results in

m . P N o
(‘2— An + 215%) anl(s,z)~—“T“~ =

60(8) m ! (s NS 5
== ZGHM [mds sin (§ — §)(8(¥, %)

n2

(11)

and its complex conjugate. Here A7) = 2+ 2m + 4n. The
coupling coefficients can be calculated explicity using re-
lations between Laguerre polynomials [5]:

1
o = __é-_(lﬁd_t_l),

mnz T T oldin It \ K 2

where L = n; + nz + m. Eq.(11) can be used to find the
evolution of the instability for a finite duration pulse. If dp
has an arbitrary longitudinal profile, these equations need
to be solved numerically.

(12)

3 MATRIX DISPERSION RELATION

Further analytical progress may be achieved by assuming
that either (i) @g varies slowly on a time-scale of a plasma
oscillation, or (ii) that ap has a flat-top profile. We spec-
ulate that for pulses where relativistic guiding effects play
some role, that this approximation will give an over esti-
mate of the growth for a short pulse. (See the discussion
of BNS-like damping below). Equation (11) can then be
solved by Fourier transform in s.



The result is a set of coupled differential equations

8'7
(d 5+ m? b
w is normalized to wyy, and A}, =

where 7 = m + 2ny, s

(L ({({m+ny) a2t 2) (1/K + (L +1)/2). Eq.(13) de-
scribes the evolution of any initial perturbation of a flat-
top laser pulse. As it is obvions from Eq.(13), all the radial
modes are coupled to each other. This is a consequence of
both the nonlinear nature of the laser-plasma interaction
and the finite transverse size of the unperturbed equilib-

a3
= o) & At 09

rium.

4 LASER-HOSE INSTABILITY

It is instructive to examine the evolution of a laser pulse
which is initially displaced from the center of the channel
as a "rigid body”, which corresponds to the (m,n) = (1,0)
mode. The coupling of this mode to other modes decreases
rapidly with the radial mode number n, so that we can
approximate the evolution of the instability by keeping
only the diagonal element A},. A more accurate treat-
ment would involve keeping a finite number of modes and
diagonalizing the resulting matrix.

‘The dispersion relation for the dipole mode, obtained by
keeping only the diagonal element, is:

4 '
k2= (1-—* 14
(1-125). (14)
where g =| a2 | /8 (1+ %) ~| & | /(8K).
Asymptotic behavior of the solution for z > 1,8 > 1

can be obtained from Eq.(14) by an inverse Laplace trans-
form and a steepest descent integration (see, for example,
{7]) in regimes that are delineated by relations between
the length of the pulse s, the interaction length z and the
coupling parameter pu. For the analysis presented above
to be valid, ¢ < 1. With zp = kow? and returning to di-
mensional variables, the asymptotic amplitude in the short
pulse regime is:

wpos K u(z/zR)

ay ~ @ypexp ¥ | a2/(8K) 112 (2/2R)* (wyos)? | (15)
Expressions valid in other regimes and details of the cal-
culation will be published elsewhere [8].

Some of the conclusions drawn in this paper rely on the
quadratic radial variation of the plasma density. Another
simple model [4], which also has better accelerating prop-
erties, 1s an inverted step-function radial density depen-
dence, which, due to finite variation in the plasma density,
will have only a finite number of discrete eigenmodes. By
a careful choice of parameters, the unstable modes can
perhaps be pushed into the continuum, which may reduce
the instability. Furthermore, since each mode has a dis-
tinct phase velocity the coupling between modes may also
provide a natural mechanism for the instability to damp.

The perturbation has, in the various regimes, an ex-
ponential spatio-temporal growth rate proportional to
(z/zr)P(wpos)?, where p+ ¢ = 1. It is not surprising
that this behavior is similar to that seen in beam break-
up instabilities encountered in linacs-here the laser pulse is
somewhat analogous to an electron beam and the plasma
channel to the metallic structure in which the electron
beam propagates. While the analogy proves useful in un-
derstanding the physical picture, and in developing sup-
pression techniques similar to BNS damping, the detatls of
the interaction in the two cases are different. The similar-
ity between the laser-hose and electron-hose [7] instability
can also be seen by choosing the perturbed field a; to be of
a dipole type and interpreting the expression (afa; + aca})
as the transverse displacement of the beam. By analogy
with BNS damping, a longitudinal variation in the ”be-
tatron frequency,” given here by 1/Z,, should reduce the
growth rate. We have analyzed [8] two mechanisms for
achieving this, either by introducing a frequency chirp on
the pulse or using the natural variation that occurs from
the nonlinear relativistic guiding. Future investigations
need to address the critical issue of how these plasma in-
stabilities, even if substantially suppressed, will affect the
final energy and emittance of an accelerated bunch.
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