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Abstract 

The excitation of travelling non-linear Langmuir plasma 
waves by a relativistic electron bunch is considered. Large 
amplitude longitudinal electric fields specific for non-linear 
excitation regime provide a high acceleration rate for the 
trailing electrons. An analyt.ical theory of the process is 
developed. The non-linear excitation is described as rela- 
tivistic oscillations of the momentum of the plasma elec- 
trons in an effective potential well produced by the bunch 
and by the perturbation of the electron density of the 
plasma. A condition for the optimal excitation of the wave 
is found which yields a relation between the density of the 
plasma, the density of the bunch and the length of the 
bunch. Numerical results support the theoretical analy- 
sis and demonstrate a deep, non-linear modulation of the 
electron plasma density and the excitation of a large am- 
plitude longitudinal field at realistic plasma and electron 
bunch parameters. The back action of the wake field on 
the bunch is also considered. Numerical results show a 
formation of sharp peaks in the bunch before its break-up. 

1 INTRODUCTION 

During the last decade plasma-based accelerator con- 
cepts have attracted much attention due to the possibil- 
ity to reach ultra-high acceleration gradients, up to l-10 
GeV/m. A few wakefield schemes have been studied (see, 
e.g., review [I]). The most elaborated one is t,he beat-wave 
acceleration (PBWA) concept [2]. Recent experiments 
with CO2 lasers at UCLA have demonstrated acceleration 
gradient of 0.7 GeV/m [3]. This concept relies on a linear, 
resonant process in a homogeneous plasma. This means 
that the density modulation remains small, and that the 
acceleration gradient is limited to de/d.z < rm.+ * where 
t is the particle energy and wp is the plasma density. 

The excitation of a longitudinal plasma wave by a single 
laser or electron pulse is a non-resonant process and does 
not require a strictly homogeneous plasma density. The 
electric field of a linear plasma wave in the wake of an 
electron bunch is restricted to the same range as the case 
of the PBWA concept [4-51. Much higher electric fields, 
however, can exist inside plasma in the case of relativis 
tic non-linear longitudinal oscillations of plasma electrons 
[6]. The process of the excitation of a non-linear Lang- 
rnuir plasma wave (NLPW) by a relativistic bunch was 
considered in [7-81. It has been shown that the profile of 
the density of plasma electrons and accompanying elec- 

‘H~lativistic units h = c = 1 are used throughout. the paper, 
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tric field sharply steepens when the density of the bunch 
approaches half the density of plasma electrons. 

At the same time, the description formalizm used in [7- 
81 is baaed on an introduction of different dependent vari- 
ables that does not allow to link all important parameters 
of the problem selfconsistently. In the present publication 
we consider a strightforward approach based on the bc- 
haviour of the momentum of the plasma electrons. Within 
this approach a direct connection between the density of 
plasma, the density of the bunch and the length of the 
bunch can be obtained. This method gives a clear phys- 
ical picture and allows to maximize the field behind th: 
bunch and, therefore, the acceleration gradirnt. 

2 PLASMA WAVE EXCITATION 

Let an electron pulse with density nb travel with velocity 
vb through a plasma with average electron dcrlsity 7+. ‘l\‘c 

are interested in plasma waves propagating at a relativistic 
phase velocity; hence, the plasma ions can be considered 
a.s immobile. The evolution of the pulse shape due to the 
back influence of the excited wake-field is neglected. Let 
our system be one-dimensional without magnetic fields. 
The Maxwell equations are in this case 

8E 
- = 4xp, 
az 

g +4nj = 0 (1) 

where p = e(&+nb) is the charge density and j = e(Eny+ 
np)u + enbug is the current density, with an, being the 
perturbed electron density and v the fluid velocity of the 
electrons. The equation of motion of a plasma electron 
under the action of the field in the wake of the electron 
bunch is 

ds’ - = eE 
dt 

(2) 

where p is the momentum of the plasma electron. 
The driving electron pulse has a relativistic velocity ltbr 

and we will look for solutions of Eqs. l-2 in the form of 
travelling waves E = E(z - vbt). Introducing a new vari- 
able t = z - Vbt, one has 

dE - = 47re(6np + nb), 

dt 

vbg = 4ac[(& + np)V(p) + 7zbUb], 

& 
(v(p) - ‘Jb)-- = eE(t). 

d< 

where 2;(p) = p/(p2 + m2)1/2, 
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One may note from here that for the type of pertur- 
bations under consideration the current density and the 
charge density are related by j = pub, which yields the 
relationshir, 

6np = -A. 
1 - Q/V 

To solve the above set of equations, we assume the profile 
of the density of the electron bunch to have a rectangular 
form 

nb(-& t) = 
nb for - 7 < ( < 0 
0 for<<-r,[>O 

where r is the length of the beam pulse. The plasma is 
initially unperturbed: 

6np(l= 0) = O,PK = 0) = 0, 
dp 

( > 
-& ~=. = 0, E(,E = 0) = 0. 

Let us introduce a new variable cy through 

da= .-ii- (5) 
vb - v 

In terms of this variable, Eqs. 3 can be written as a single 
equation for the momentum p of the plasma electrons 

d2p XJ 
--1 Ti7= ap (6) 

where the potential field is 

u(p) = 4Te”(np - nb)(p2 $ nt2)1’2 $ 4Te2nbvbp (7) 

Equations 6- 7 describe two different regimes of the mo- 
tion of plasma electrons, depending on the relation be- 
tween the plasma density and the beam density. In the 
present paper we shall only discuss the case when the 
beam density is below the threshold of NLPW breakdown: 
Tlb < np/(l + ?&). In this case the potential field (7) has a 
shape of an asymmetric well in which the motion of plasma 
electrons is finite. This means that there are oscillatory so- 
lutions for the motion of plasma electrons under the action 
of the electron beam pulse. These solutions move with the 
phase velocity equal to the beam velocity, vph = Vb. The 
oscillatory solutions exist even when the velocity of the 
plasma electrons bec.omes relativistic, p >> m. 

The process of the NLPW excitation starts from the 
point < = 0, p = 0 corresponding to the leading edge of the 
electron pulse. To get the highest amplitude of the oscil- 
lations behind the bunch, the pulse duration should last 
until plasma electrons reach the opposite turning point in 
the potential U(p). It means the existence of some optimal 
bunch duration 70 for effective NLPW excitation. At this 
point plasma electrons have acquired the momentum pm. 

The value of pm can be found from the conservation law 

f 2 2 + U(p) = U(0) 
( > 

The derivative dpjda vanishes at the point p,, therefore 

p, x -?hvb 
nb(‘+ - nb) 

np[np - nb(l f Vb)]’ 
(9) 

The optimal bunch duration 70 can be found as 

To = 

It is seen that pm can be much larger then m if nb tends 
to n,/(l+vb) = np /2. Therefore, if the density of the driv- 
ing beam is close to but smaller than half of the plasma 
density, a non-linear Langmuir plasma wave can be ex- 
cited. This wave is much more effective for electron accel- 
eration then the linear LPW. 

Behind the bunch n) = 0, therefore the potential well 
U(p) becomes symmetric but still anharmonic. Plasma 
electrons perform free nonlinear oscillations with ampli- 
tude pm in this potential well . These oscillations corre- 
spond to nonlinear relativistic Langmuir plasma waves [6]. 
It follows from Eq. 4 that when the velocity of the plasma 
electrons v approaches the beam velocity vb, the plasma 
density perturbation h,/n, can become larger than unity 
(one should note that the wave breaks down when the 
plasma fluid velocity reaches the bunch velocity, i.e. when 

IPA x m/(1 - v:)li2 = mTb). The longitudinal electric 
field of the plasma wave with such a density distribution 
is much larger than that of a linear Langmuir wave. The 
same is valid for the acceleration gradient, dc/dr = eE. 

Since eE = -dp/dct, the maximum field strength behind 
the bunch occures at p = 0. For IpmI >> m one obtains 

eEmaz x (2mlp, IL$)l’2 (11) 

The plasma electrons momenta were shown to be limited 
with the quantity rnrb. One can thus see from the above 
equation that the acceleration rate in NLPW is restricted 
to the value 

eEmaz < 779(27p)1’2 

which is much larger than that for linear LPW 

3 NUMERICAL RESULTS 

To confirm our analytical considerations, we have made 
numerical simulations of the process of NLPW excitation. 
Our 1D code is fully non-linear and includes the back in- 
fluence of the excited plasma wave on the electron bunch. 
Numerical results demonstrate that an electron bunch with 
a density below the wave-breaking limit and with the opti- 
mized length can excite the NLPW effectively. Such non- 
linear behaviour has also been reported in [8]. 

Fig.1 shows the density of plasma electrons and the lon- 
gitudinal electric field behind a bunch. The energy of the 
electron beam is 50 MeV and the beam current density 
is 5 kA/cm2. This corresponds to an electron density in 
the bunch of 1012 cmw3. The bunch length corresponds 
to the optimal duration defined by Eq. 10 and equals to 
3.6 cm. The plasma density is 2.5 1012 cmv3, so that 
nb = 0.8(np/2). It is seen that the excited plasma density 
modulation is much larger than unity and that the ampli- 
tude of longitudinal electric field exceeds more than two 
times the theoretical limit for the amplitude of a linear 
Langmuir wave. 
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The simulations confirm that when the bunch is either 
shorter or longer than the optimal lengtll determined by 
Eq. 10, or when the beam density nb deviates too much 
from n,/2, the acceleration gradient reduces significantly. 
The dependence of the acceleration rate on the plasma 
density for fixed beam current density of 5 kA/cm2 is 
shown in Fig.2. 

Another important result, coIlferns the evolution of 
the driving electron bunch during its travel through the 
I>l~~nla. Simulationsshow practically no significant change 
of tht: bunch shape until it has lost almost all its energy in 
the excitation of the NLPW. This is due t,o the fact that 
tile velocity of a relativistic part,icle weakly depends on its 
energy. 

Fig. 3 shows the shape of the bunch after a pathlength 
of 72.5 cm in the plasma of the density 3.3. lOI cmm3. 
During the first 60 cm the bunch keeps its initial rectan- 
gular shape. Hence, an electron moving in the wake of 
the bunch can be accelerated along a relatively long dis- 
tancca. After that distance under the action of the wake 
field sharp irregular peaks appear in the density distribu- 
tion of the butlch. The excitation of the NLPW deterio- 
rates and the amplitude of the wake field and the plasma 
density modulat,ion decrease. 

The results shown in the Fig. 3 contain also a promissing 
possibility of a new kind of bunch compression technique. 
After travelling a certain distance through plasma, very 
dense and short microstructures (rr~icrobuncllcs) emerge on 
the background of the broadened initial density distribu- 
tion. The elect,ron density of these microbunches exceeds 
the initial bunrh density more thim an order of tn:tgnit,ude. 
At this stage the velocity spread in the niicrobunch is of 
order unity. But if the mic.robunchrs art: quickly acceler- 
ated again, the final energy spread can be small, because 
all electrons acquire the samp energy ami an initial spread 
is related now to a much larger energy. This kind of beam- 
plasma interaction can thus be used for the production of 
short and dense electron bunches. 

C(cm) ‘. 4. 2. 0. 

Fig.1. The distributions of the perturbed plastna density, 
6n,/n,, and the longitudinalelectric field, eE, behind elcc- 
tron bunch (the bunch itself is shown with the dotted line); 
beam and plastna parameters see in the text. 
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Fig.2. The acceleration rate as a function of the plasma 
density; beam current density is fixed at 5 k.4/cm2 
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