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1 MOTIVATION 

The still unsolved problem of the origin of ultra high en- 
ergy cosmic radiation and related phenomena of individual 
and collective particle motion in extremly strong electro- 
magnetic fields associated with compact objects [l] have 
renewed the interest in radiation and radiation reaction as 
described within the frames of Mazwell theory. 

Unfortunately, as is well known, the classical equation 
of motion’ based on the early work of H.A. Lorentz [2], 
M. Abraham[3, 4] and M. I;aue [5, 61 also describes un- 
physical run-away solutions which have been widely dis- 
cussed in literature. In principal, these can be avoided by 
appropriate initial conditions. But then the question of 
stability of solutions arises. 

Various attempts have been published since then to de- 
duce stringently the correct equation of motion. Quite 
a few of them make use of the conjecture of an extended 
electron [7,8] as considered by H.A. Lorentt and M. Abro- 
ham. P.A.M Dirac tried to deduce the Abraham-Lorentz 
equation for the point electron using advanced together 
with retarded Green’s functions [9]. Recent approaches 
have been made within the frames of quantum mechan- 
ics [lo, 111. It will not be possible to discuss this extended 
research work here. 

It is the intention of the contribution to demonstrate 
how the aforementioned problems, at least in principle, 
can be avoided in self-consistent Maxwell theory 112, 13, 
14, 15, 16, 171 and how the corresponding equation of mo- 
tion may be used to predict an energy- and radiation lim- 
iting mechanism that may operate in the polar regions of 
rotating, magnetized neutron stars. 

I shall consider here the classical equation of motion for 
a particle of mass m and electric charge e 

dg/dr = (l/m).K, (1) 

where g = (u’,u) is the Minltowski vector of velocity 
of the particle under consideration with the components 
uj(r) = dzj(T)/dT, so that u” = (c” + u2)lj2 = cy with 

‘The classical equation of motion if often referred to as Abrahan- 
Lorentr equation (A-L equation) or, with reference to later work by 
P.A.M. Diroc, Lorentr-Dime equation (L-D equation). 

u = yv, where 7 is the Lorentz factor and xj are coor- 
dinates in Minkowski space as a function of eigentime r. 
Latin indices are running from 0 through 3, while Greek 
indices are running from 1 through 3. 2’ = ct is the time 
coordinate. g = (Kj) = (K’,K) is the total force acting 
on that particle. 

In the momentary rest system of reference (MRS) of 
that particle, the zero component of the total force (as of 
any force) is known to vanish. Therefore, in the MRS, it 
is always sufficient to consider the remaining three com- 
ponents of the equation of motion 

dvMRs /dt = (l/m)Kicim, (2) 

with t = tMRs = T. The covariant form (1) of the equation 
of motion is uniquely determined through Lorentt transfor- 
mation from the non-covariant form (2) of the equation of 
motion, the applicability of the latter being restricted to 
the immediate neighbourhood of a certain point on the 
particle’s world line in Minbowski space. For that rea- 
son it is possible to restrict the following considerations to 
the MRS and later to transform into an arbitrary inertial 
frame of reference IS. 

2 MAXWELL’S TENSOR FOR THE 
TOTAL ELECTROMAGNETIC 

FIELD 

In order to evaluate electromagnetic forces acting on that 
particle it is necessary to refer to some well-known results 
of Mazwell theory. For example, the particle is known to 
be the source of a Coulomb field described, in the MRS, 
by the electric vector E$.%’ = eRo/R2. 

R is the distance from the particle to the point at which 
the field is considered. Ro is the correponding unit vector. 

Since the particle is subject to the force KMRS and 
therefore to the acceleration dvMRS/dt, it is also ex- 
pected to ‘create’ a radiation field as described by Lie’nord- 
Wiechert’s potential and further by the resulting electric 
and magnetic vectors 
E%%%(t) = (mTo/cR)[&, [&, dvMRs/dt]]RzT and 

H%%%(t) = (mqo/cR)[Ro, [Ro, [Ro, dvMRs/dt]]]fl.fx, re- 
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spectively, where r]o = e/me. The subscript RET stands 
for retardation. 

The total electromagnetic field, in the MRS, then is 
described by the electric vector EWES = E$<; +Egi% + 
E$OR%’ and by the magnetic vector HMRS = H&$& + 
HEAR%, where, in the MRS, Eg$% and Hg$r: are the 
electric and magnetic vectors, respectively, of the ezternal 
electromagnetic field due to all other electromagnetically 
interacting particles around. 

Therefore, the total momentum current is given by 
Mazwell’s tensor 

of that particle, EgA& and Eg%%‘, respectively, ‘created’ 
within a time interval (t,t + At), during which the par- 
ticle rests in configuration space and moves from 0 to 
(dvMRs(t)/dt)& in velocity space. 

The corresponding momentum flux within a later time 
interval t’, 1’ + At with 2’ = t + 61 and 61 > 0 through a 
spherical surface of Radius R > 0 arround that particle 
may then be written 

K&$a (t’, R) At = (1/47r) f E$j$$ (E&s;“, d20)RET At 

R>O 

QMRS~~ = (EMRs~~v- 

-(~/J*)(EMRs~EMRsv +HMRs~HMRsv)}IRET, (3) 
For 6t = R/c, and R > 0 evaluation of (8) delivers 

with the total energy density 
K$i% (1 + R/c) = (c/+oKMRs(t), 

CMRS = (1/84(/E MRS/'+ IHMRsI~). while for 6t = 0 causality requires 
The subscribt ‘RET’ now has been put into apostrophes 

indicating that retardation applies only to contributions Kg”R< (2, R) = 0. 

pertaining to the particle field. 
Taylor’s expansion delivers2 

3 ELECTROMAGNETIC FORCES 
ACTING ON THE PARTICLE IN 

0 = K$--<(t, R) = K$-‘&%(t + 61, R)- 

THE MRS 
-61 dKg$%(t + 62, R)/dt + . 

Integration of Mazweil’s tensor for the total field over the 
For 61 = R/c, (9) and (11) may be combined to3 

surface of a sphere in the limit of vanishing radius, R -+ 0, K&$$(t + R,‘c, R) = r,-, dKM.iRs(t)/dt 

EMRsd20+ 
which is found to be independent of R so that 

K&$<(t) = qd&~s(t)/dt. 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

+P/47r) 
f 

EMRS (EMRS, d’o) In self-consistent Maxwell theory the particle under con- 

R-+0 
sideration participates exclusively in electromagnetic in- 

\ teraction. Thus, in the lowest order of the electromagnetic 

+(1/47r) HMRS (HMRs,@~) (4) 
interaction constant e, the radiation ‘reaction’ force is ob- 

R-0 
tained by restricting in (13) the total force KMRs(t) to 

'RET' the Lorentr force KFR%(t) as given by (5) so that 

delivers the total electromagnetic force acting on the par- 
ticle under consideration. 

Kg%%(t) = ~odK~~~(t)/dt. (14) 

When evaluating the integrals on the right side of (4) 
non-vanishing terms are found only to arise from the 4 LORENTZ TRANSFORMATION 
dyadic products Egs; @ E$s%L and EsAR% @ E$s%‘c. INTO AN ARBITRARY INERTIAL 

The former is identified as the Lorentz force FRAME OF REFERENCE 

Kh”fs = mcqoEf&~, 

which is easily transformed into an IS, 

(5) 
To transform (14) from the MRS into an arbitrary IS, 
it is useful to remember that the norm of the Minkowski 
vector of velocity u, is constant and equal to the velocity 

KLORj - - mqoFEXTjk 
wr (6) 

of light /1g112 = (u”)” - (u)~ = c2. 
Thus, the three contravariant components u’, u2 and u3 

where FEXTjk is the tensor of the external field. 
of the velocity vector 11 in Minkowski space &(g) 

The latter term arising from (4) may be referred to as 
may be reinterpreted as the three contravariant compo- 

the radiation ‘reaction’ force 
nents ui, u2 and u3 of a velocity vector u in the three- 
dimensional Riemann space Rs(u) representing the mass 

Kg%< = (1/4x) 
f 

ERAD 
MRS (G%RusL I d20),,, (7) ‘This, obviously, is a somewhat formal argumentation. A more 

R-e0 
stringent deduction will be given elsewhere. 

3Again, it is necessary to remember that equations given in the 

To evaluate the integral on the right side of (7), it is nec- 
MRS, e.g. (9) and (12) are restricted to the vicinity of a given point 

essary to consider both, the radiation and Coulomb fields 
in Minkowski space and, therefore, msy not be integrated over a 
finite time interval. 

809 



shell of that particle [14]. With the help of duo = 
(u, du)/cy, a metric may then be introduced in Rs(u) by 

- IldtJ/12 = (Idull = y,,dtb%lu”, (15) 

with the metric tensor 

Ypv = 4baJ - /WY, (16) 

where per definition Pr = /3’-’ = upIcy. 
The invers metric tensor is 

y’1” = 6fiY + y2pp. (17) 

( According to these definitions the covariant components 
up = T,,~zL” of the velocity vector u have to be distin- 
guished from the covariant components up = gfiuy of I). 

The corresponding Christo& symbols in I&(u) are 

YW p = -(rIwYp". 

The latter may be used to evaluate the covariant 
live, e.g., of the vector of Lorentz force in Ra(u), 

DKLoR,‘d7 = dKLoR/dr + u~I~LoR~~2/mC2, (19) 

(18) 

deriva- 

in an arbitrary inertial frame of reference. Thus, with (14), 

KRAD (T) = roDKLoR(r)/dr. (20) 

Taking into account the appropriate zero component, (19) 
leads to what has been defined as the causal derivative [12] 
of & in &(g), 

DKLoR/d7 = dKLoR/dr + ~~~~LoR[~2/mc2. - (21) 

Prom (20), the radiation ‘reaction’ force is eventually 
obtained in the form 

KflAD = m70GjkUk 
J (22) 

with the radiation force tensor 

Gjk = %U’dlFjk + (UfLUk - ‘Uj?Lf”) /C2 (23) 

where u&L = T$FjkFk’Ul stands for the second Lorentz 
3 

acceleration4. As is well known, in the MRS, this equation 
of motion reduces to 

PI 

[31 

[41 

[51 

[61 
PI 

PI 

PI 
[lOI 
ill1 

1121 

[I31 

[I41 

dv/dt = crloE~~~+c~oTodE~~~/dt+c~~~o [I$-$;, H$:;] . 

(24) 

5 AN ENERGY LIMITING 
MECHANISM 

[15] K.O. Thielheim, Proc. Second Tallin Symposium on Neu- 
trino Astrophysics, Lohusalu, Estonia, October 5-8, 138 
(1993) 

[16] K.O. Thielheim, Proc. Int. Conference on Non-Accelerator 

1012 G ), while the latter still is very large though consid- 
erably smaller than the former. Under such circumstances 
an electrically charged particle is moving practically along 
a magnetic field line, accelerated by the component of the 
electric vector EfXT parallel ( or antiparallel ) to the mag- 

netic vector HEXT. 
When Lore& transforming the external fields into the 

MRS, the parallel component of the electric vector, EfXT 
does not change. But the transverse component of the elec- 
tric vector does change, EfXT -+ E$$51 = yETXT, Also 
a transverse component of the magnetic vector, H$xRTsl = 
-(y/c) [v, EfXT], arises. 

Inserting these fields into (24) produces an upper limit 
of particle energy 

r2 i (llsoro) { E;XT/(EfxT)2} . 

[II 
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