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1 INTRODUCTION 2 EQUATIONS OF MOTION 

The betatron motion of a particle stored in a linear ma- 

It was argued, that the beam blow up, caused by an insta- chine with sextupoles is given as a solution of Hill’s Equa- 

bility like incoherent excitat.ion frequently appearing dur- tion. Switching to Courant Snyder variables by t.he defini- 

ing the operat,ion of HERA, could be due to a loss of Lan- tions 

dau damping. It is unlikely, that this loss is due to one of 4s) 

&Pm 
= x(7) = a, cos a&(s) 

the well known instability mechanisms [2]. In fact a co- 
herent tune shift is not detectable. So one has to look at 
the sources of frequency spread in HERA and has to t,hink 

Y(S) 

about possibilities to control them. 
d-Q-J-q = 47) = UY cos @Y (s) 

From the so far unexplained observation that the 
instability-like excitation can be cured by quick changes of 
the sextupole currents, one could argue that non-linear de- 
tuning, occuring as a second order effect of the sextupoles, 
might play a.n important role. This detuning do not arise 
before second order. Because the potential due to the sex- 
tupole fields is asymmetric with respect to t,he deviation 
from a closed orbit’, for a particle performing undisturbed 
(symmetric) betatron oscillations the focussing and defo- 
cussing effect of the sextupole averages to zero resulting in 
a zero first order tune shift. But the sextupoles also act 
on the betatron motion and the particles do not pass the 
sextupole on axis any more. Averaged over many turns 
the resulting (first order) orbit distortion leads to a net 
focussing or defocussing, of a strength depending on the 
betatron amplitude - the sextupole detuning. 

Hamilton Perturbation Theory allows a calculation of 
the detuning terms [l], but the resulting expressions look 
rather formal and complicated and can only be evaluated 
with computers. In this paper we develop a new approxi- 
mation method which gives much simpler and transparent 
expressions for the detuning. This opens a more intuitive 
path to quantify this non-linear phenomena and may help 
to find new ways to cont,rol Landau damping, for example 
by other sextupole arrangements. 

First we will demonstrat,e the method for an optics with 
a single sextupole. Then we generalize to the case of regu- 
lar FODO structure with one sextupole at each cell. There 
we assume that t.he phase advance per cell scaled by the 
total phase advance for one revolution is the same in bot,h 

using the notations 

TYii(S) = ” @Y(S) Y 

“,Y - horizontal, vertical emitt,ance 

a2.y - betatron amplitudes normalized to 
unit emittance 

Q, =>Y - horizont,al, vertical betatron phase 
pZ,y(s) - horizontal, vertical beta funct~ion 

w’“,Y - bet.atron frequencies in units of 
revolution frequency 

i.Z,y(s) - quasi time in units of revolution time 

the equations of motion transform into non-linear coupled 
oscillator equations 

d2 
;iT;x+“i” = -a(x2 - DZy2)A(~J (1) 

~y+v2y=-a.~.r,y-h(iy) . (2) 

We introduced constant parameters o, q, O* by 

(mLsex) is the integrated sextupole strength and & are 
the values of the beta functions inside the sextupoles. A(T) 
describes the localization of the sextupoles. If r,,, is the 
optical length of a single sextupole, A(T) is given by 

A(r) = 
1 

l/TWX inside the sextupole 
0 outside 

transversal planes. Checked with tracking, the resulting 
formulas show a high accuracy. What is still left is deriv- 

For a circular structure with one single sextupole of zero 

ing the detuning formula for the most general case with 
length (thin lense approximation) A(T) becomes a periodic 

arbitrary and different lattices in both transversal planes. 
delta-function 

So this work has to be taken as a review of the method in 
general and the results reached so far. 

A(r) = x 6(~ - 2alc) = c eiankr 
k k 

(3) 
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We note, that for FODO structures the scaled horizontal 
and vertical beta function in the arcs (where the sextupoles 
are located) look similar. Shifting the orbit coordinate 
by half the length of a FODO cell (denoted as 1/2&e,) 
and multiplying with a scaling factor the vertical betatron 
phase is deduced from the horizontal one. 

$ Q=(s) = ; @, (s + Ld4 (4) 

So we may use a common quasi time for both planes. In 
the arcs of HERA the relative phase error due to this sim- 
plification, is smaller than 5%. The task left is to calculate 
the detuning generated by the non-linear coupling terms 
in eqs. (l),(2). The magnitude of these terms is deter- 
mined by the parameter o/w2 and will always be small 
under physical conditions. So we may use the asymptotic 
expansion methods of Bogoljubov and Mitropolski [3] (see 
appendix). 

3 VERTICAL DETUNING OF A 
SINGLE SEXTUPOLE 

We will demonstrate the method by the calculation of the 
vertical detuning. As explained before a tune shift gener- 
ated by a sextupole is always connected with orbit distor- 
tions u,, uy. Because a sextupole affects the orbit in both 
transversal planes there are two sources of detuning (one 
for each plane). In calculating the horizontal distortion 
u, to lowest order we may assume an unaltered vertical 
betatron motion. Eq. (1) then reads 

j + ;;, = --Q (rz _ D’ a; cos3 (5) 
k 

With an accuracy up to second order in a the horizontal 
coordinate can be written as 

I=a,cos\k~ + u,(\E‘,,Qy,r) (6) 

where a, and \Ir, are defined as the amplitude and phase 
of the fundamental harmonics so that uZ is the orbit devia- 
tion due to the non-linear time dependent force appearing 
on the right hand side of eq (5). Q, = w,,r is the verti- 
cal phase. To get a finite averaging interval in applying 
Bogoljubov’s method we assume (without loss of general- 
ity) the vertical tune equal or near a rational number (this 
is only done to avoid special mathematical considerations 
necessary for averaging over infinite intervals) 

Q,, = P/N P,N integers, no common divisor 

The external force in (5) now is periodic with period 5. 
Introducing the scaled time 0 by 

eq. (5) can be written (with an accuracy up to second 
order in a) as 

+ C.C. 

This gives a distortion 

1 - D2ai/az 

Qs--n” ’ 

(8) 
e2i9, 

+ 

D2a2/ 2 
y a,e 

i2P0 

Q$ -(n +2Q,)2 - 02 -(n + 2Qy12 
+ C.C. 

The resulting vertical detuning can be calculated from the 
equation of motion 

y + w;y = ma. q u, . y. C ei2akT 
k 

By averaging over XI!,, and 0 according to eq. (18) we get 
Awi, the part of the vertical detuning due to the horizontal 
orbit change 

2 

Awi = -4Q;& 

2 a, - D2ai iD”ay” 
Qz _ *2 - Q3 - (n + 2QyY > 

(10) 
In writing down the equation which determines the vertical 
orbit change due to the sextupole we may substitute 2 by 
an undisturbed horizontal betatron motion 

ji + wy2y = -a . q a, y . coswrr C ei2*l-’ (11) 

In contrast to our last considerations we now assume the 
horizontal tune to be a rational number and define a dif- 
ferent time. coordinate 0’ 

Qc = P’/N’ 0’ = 2 
N’ ’ 

We rewrite the vertical coordinate as 

y = ay cos 0, + uy(q~, Q,) 0’) (12) 

where the first part is defined as the complete fundamental 
harmonic, and calculate the second part using eq. (11) (up 
to second order) 

,i(nN’+P’)o 

0; -(n+Q,+Qy)2 + 

,i(nN’-P’)@’ 

+Q;-(n-Qz+Qy)2 

This is substituted into the right hand side of eq. (11) and 
then by averaging with Bogoljubov’s formula the detuning 
is calculated. We arrive at the following result for the 
vertical detuning due to vertical orbit changes 

&II - 1 
Y - Q; - (n + Qz + Qy)’ + (13) 

g+w?z=-CLa% 
I 4 

(1 - D2 2 )+ 
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+ Q; - (n - Qr + Qy)’ > 



Adding the contributions (10) and (13) and summing up 
we get the total vertical detuning generated by the sex- 
tupole 

Awy = (14) 

+ 8 
’ sin wy 

+ 
,Bi . sin wy 

cos (wz + WY) - cos wy cos (wz - WY) - cos WY I- 

{ 

sin w1 - ai fy 13,” 1 - cosw$J + ; cos21mz.Xw Y 2 1) 

The horizontal detuning can be deduced in a similar way. 
One obtains 

Au, = - % (mLsex)2 (azc, @z f { I fTzw,, + (15) 

+ sinwz 
cos (2w,) - cos w, 

/3, I sinw, 

cos (WE + WY) - cos WY 
+ p,” . sin wy 

cos (WI - WY) - coswy 

Direct tracking of eqs. (l), (2) shows the high accuracy 
of these results, even for large values of Q/U’ (which still 
hold for unrealistic la.rge values of the order of 10). On or 
very near the second and t.hird order resonance t,he calcu- 
lation must be altered to fit t,he resonant character of the 
orbit, distortions. The same applies exactly on the coupling 
resonance. This would be straightforward but is not nec- 
essary because in reality every running machine is always 
sufficiently detuned from these resonances. 

The results (15) and (14) can be generalized to describe 
a FODO structure containing a regular string of 2 sex- 
tupoles of successive phase advance of 6r$ followed by a 
stiaight section with a phase advance of w - Z 64. 
localiza.tion function then reads 

A(r) = x Ck.eikzn’ 
sin Z*ek 

k 

,q = e-i(Z-‘)%k sin zk 

2Q 

The 

(16) 

(Q = w/(&r) denotes the Q-value) 
The calculation of the detuning then goes along the same 

route as before. In all Fourier sums describing the depen- 
dence on time now there appear a factor c,,. Finally we 
arrive at similar expressions as before (for the vertical di- 
rection these are (10) and (13) but. all terms now are mul- 
t’iplied by the square of c, and they cannot be summed 
analytically anymore. we get 

+ Q; - (n +b. + Qy)’ + Q; - (n -“Q. + Qy12 > 
1 

+ QI - (n + 2Qy)2 

This result is confirmed by numerical evaluation of (l), (2) 
and is found to give the detuning to high precision. 
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A BOGOLJUBOVS FORMULA 

Bogoljubovs averaging method applies to every oscillator 
equation of the form 

Z(r) + w*z = g(!lr, z) (17) 

with a weak nonlinear perturbation g(0, E) of periodic 
time dependence 

g(0, z) = g(0 + 2*, z) 

For calculations with accuracy up to highest order in the 
magnitude of g the oscillator is parametrized by the phase 
Q and amplitude a of its fundamental oscillation mode 

Z(T) = a(r) cos Q(r) i(r) = -u(r) w sin *(T) 

Then the resulting mean tune shift Aw of the oscillator 
frequency w due to the nonlinear character of g is given by 
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A,=-& /U2r~~2r~g(Rr,acoslU) COST 

(18) 
In case of a resonance (nw + mSl = k.2~ with n,m,k small 
integer numbers) one would have to use the resonance ver- 
sion instead. 
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