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Abstract 

The particle motion in sextupole fields of a storage 
ring is studied analytically. The invariants of mo- 
tion are constructed up to high orders in the per- 
turbation parameters for a harmonic-expanded 
Hamiltonian using Lie transforms implemented in 
the REDUCE program. The phase space patterns 
of the motion are drawn up in resonant and non- 
resonant cases. A technique for estimating a dy- 
namic aperture (DA) is described. The results are 
compared with numerical tracking. 

1 INTRODUCTION 

Many numerical procedures were developed to 
simulate the nonlinear particle motion in circular 
accelerators. A bounded area can be estimated in 
a realistic way taking into account such effects as 
energy oscillations, closed orbit distortion or the 
influence of insertion devices. But powerful and 
complex tracking codes are of the kind of “a black 
box” for users: sometimes it is difficult to inter- 
prete the phenomena and understand either they 
are resulted from the features of an introduced 
model or from the code peculiarities. 

So the application of analytical methods to get 
more information out of the tracking and for a 
better understanding of the underlying physics is 
of great importance. 

In this paper we discuss the results of the single- 
particle dynamics study for a 2.5 GeV dedicated 
SRS SIBERIA-2 [l] using the perturbation tech- 
nique based on Lie transforms. Phase space por- 
traits are shown in 1D (both nonresonant and 
resonant) and 2D cases including high order ef- 
fects. The dependence of the horizontal DA on 
the initial betatron frequency was founded semi- 
analytically. The estimations are compared with 
the tracking simulations [2]. 

2 PHASE SPACE PICTURES 

The 2D Hamiltonian with sextupole perturbation 
in action-angle variables is given by: 

H = v,J,+v,J, (1) 
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where Al,, Azm, Bi, and B+-, are the az- 
imuthal Fourier harmonics of perturbation. With 
this harmonic-expanded form of Hamiltonian, we 
can study the influence of selected terms on the 
particle motion and try to simplify the expressions 
by leaving only the dominant harmonics. 

The unperturbed part of (1) is linear, and non- 
linearity appears in the second order of perturba- 
tion. It is known that such systems are very sen- 
sitive to high orders of perturbation and to con- 
struct the solution systematically, order by order, 
we use the perturbation method of Deprit, which 
is based on Lie transforms [3]. Deprit recursive 
relations for the nth order term of the generating 
function w,, new Hamiltonian ir and the trans- 
formation operator ‘? were implemented in the al- 
gebraic manipulation program REDUCE. 

First, we consider the horizontal motion. In 
this case the perturbing part of (1) is 
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+ 2 Asmcos(39~ - me)). 

Here we assume that the unperturbed betatron 
tunes are far from resonances which can destroy 
the convergency of the Deprit series. As we pick 
the new Hamiltonian p to be the nonzero ‘pZ 
and 8 average terms that produce a secularity 
in the generating function, the new Hamiltonian 
H(J) together with the new action J are invari- 
ants of motion and the inverse transform gives us 
the relation between the old and new variables 
F(y, J) = J = const whose solution provides the 
phase trajectories of the original system. 

The new action as a function of the old variables 
can be written (0 = 0 is assumed) to third order: 

7 = & + & + & + 13 + ** * (3) 
& = J, 
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The coefficients in (3) are infinite sums, for ex- 
ample, c2 = CzzYW cZm. The terms of these sums 
up to the 2nd order are expressed as follows: 
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Because of the denominator in al, and usm 
which is the distance from a certain resonance, 
we can select “strong” harmonics already in a first 
order expression for J. In the case of SIBERIA-2: 

1 1 
~ E 3.5, ~ 
*x -1 

cz 1.4 
vz - 2 

1 1 
~ 73 7.1, ~ 
3V, -4 3v, -3 

E 1.2. 

Here v, is the betatron tune for one cell, i.e. 

ux = &%/NC. For SIBERIA-2 number of cell 
&V, = 6. The major harmonics all and a34 exceed 
the next ones approximately by factors of 2 and 
6 respectively. As al, and asm will apear in high 
order expressions in products, the influence of all 
harmonics except the dominant ones is expected 
to fall off rather quickly. 

In Figure 1 the phase trajectories obtained from 
tracking and predicted i) with the sum over &300 
in (2), ii) with a single harmonic approximation 
are shown. 

The equation for a ith order generating function 
has the form [3] 

EOWi = L!i + Fi(Cp,, 0) (4) 

In resonant case we need to choose Qi to cancel 
both the secular terms and the term with a small 
resonance denominator. Now we cannot trans- 
form to a Hamiltonian independent of the phase, 
but this Hamiltonian can be solved in ordinary 
way by using the resonant variables. From reso- 
nant Hamiltonian which is a function of the new 
variables HT((p, J) we can find out the dependence 
j(q) and plot, after back transformation, phase 
curves of the original problem. 

Figure 2 demonstrates the phase space struc- 
ture in the vicinity of the resonance 5v, = 6 which 
appears in 3rd order. The curves are plotted from 
tracking and resonance perturbation technique up 
to 5th order. The agreement seems quite reason- 
able. 

In 2D case the phase space calculation using 
perturbation methods is very cumbersome and 
can be done under the REDUCE only in a sin- 
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Figure 1: Horizontal phase-space trajectories. 
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Figure 2: Invariant curves near 3rd order reso- Figure 4: Horizontal DA versus unperturbed be- 
nance 5v, = 6. tatron tune. Tracking and 5th order prediction. 

gle harmonic approximation. In each series in (1) 
we drop all the terms except main ones. Figure 
3 shows the two dimensional 3rd order calcula- 
tion for phase surfaces J,(cp,, cpZ) in the neigh- 
bourhood of a coupling resonance uZ - v, = 0. 

3 DYNAMIC APERTURE 

The bounded region is obtained using the expres- 
sion for a back transformed action variable. We 
seek the singularity in the J = f(v) which occure 
when the derivative g = 00. It can be shown 

that last condition is equivalent to w = 0. 
To find the boundary of stable motion we need to 
solve last equation numerically and take such a 
value of p to which a minimum of J corresponds. 
This point ( Js, ipS) when projected to the value of 
v = 0 (Poincare crossection) gives us the DA. 

For DA prediction when the betatron tune is ir- 
respective of the resonance points we should make 
use both resonant and nonresonant perturbation 
techniques. In Figure 4 the profile of the hor- 

* * * . tracking 
single harmonic 
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izontal DA as a function of the initial betatron 
tune is demonstrated. The Deprit theory up to 
5th order was applied to obtain the expression 
of action-phase dependence of the original prob- 
lem. For comparison the numerical simulation re- 
sults are shown. It seems for us that the values 
of the stable area boundary for tracking and an- 
alytic computation are in good agreement. On 
the picture one can see resonances 6v, = 42 (4th 
order), 5v, = 36 (3rd order) and 4v, = 30 (2nd 
order). The strongest resonance is as one should 
expect the first order resonance 3u, = 24. 

4 REFERENCES 

[l] V.V.Anashin et al., “The Dedicated Synchrotron 
Radiation Source SIBERIA-2”, NIM, A282 
(1989), pp.369-374. 

[2] V. Korchuganov, E. Levichev and V. Sa- 
jaev, “Chromaticity Compensation and Dy- 
namic Aperture Limitation of SIBERIA-2”, Pro- 
ceeding of the 1993 Particle Accelerator Confer- 
ence, Vol.1, pp.230-232. 

[3] J.R.Cary, “Lie transform perturbation theory for 
Hamiltonian systems”, Physics Reports 79, No.2 
(1981) 129-159. 

Figure 3: Vertical invariant phase surface. 
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