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Abstract 

In this paper we analyze the most noticeable bifurcations 
preceding global chaotic states in a low-energy system for 
which wave and cyclotron frequency are the same. To 
do that, we find it convenient to classify the lowest en- 
ergy resonant islands into nonrelativistic and relativistic 
types. Nonrelativisitc islands are saturated by mismatch 
terms They have no hyperbolic points along their bound- 
aries and may overlap with higher energy chains without 
the appearance of chaotic orbits. Relativisitc islands are 
saturated by nonlinear mass correction terms and although 
they also have no hyperbolic points along the boundaries 
their overlaps with higher energy chains is not free from 
the presence of stochastic trajectories. It is also shown 
that the usual cascade of period doubling bifurcations is 
present only in the nonrelativistic case; the cascade is sup- 
pressed otherwise. 

The purpose of this paper is to examine the sequence 
of the most noticeable Hamiltonian bifurcations leading to 
chaos in low-energy regions of phase-spaces of magnetized 
relativistic particle submitted to the action of harmonic 
waves see ref.[l] - [5]. The interest shall be to study bi- 
furcation sequences generated by waves propagating per- 
pendicularly to the external magnetic field, and the role 
played by the longitudinal (parallel to the magnetic field) 
particle momentum on these sequences. We choose this 
kind of geometry because it is relevant in terms of practical 
applications and because it simplifies calculations without 
hindering the physical effects we wish to focus on. 

In the model, a relativistic particle is simultaneously 
submitted to the action of a background magnetic field 
and an electrostatic harmonic wave propagating along the 
3: axis. The corresponding Hamiltonian can be written as 

H = [l + P,” + (Py + cc)’ + P,2]‘i2 + A, cos(kz - wt), (1) 

where H is normalized to mc’, P to mc, the wave ampli- 
tude A, to e/mc2 and where time and space are normal- 
ized to w, E ]eB/mc] and w,/c respectively, with B as the 
background field, m as the electron mass, c as the velocity 
of light and e as the electron charge. The wavevector % 
and the wave frequency w are normalized accordingly. 

If one introduces canonical guiding center coordinates, 
P, = a COST and x + Py = fi sin r#~ and makes use 
of the harmonic expansion for Bessel functions, it becomes 

possible to cast the Hamiltonian in the resonant form 

H = H,(Z) +A, E J@v’%) cos(ld, - wt) (2) 
k-Co 

where H, G [l + 21+ P.j]‘/2. 
The Hamiltonian (2) generates a set of primary reso- 

nances II:, , n = 1,2,3..., that can be located along the 
action axis 1 according to the relation n wO(li:,,) = w, 
with w,(l) = &H,(Z). The symbol 1.n denotes the ra- 
tio of the gyrofrequency wO(Z) to the wave frequency ,w 
(for higher order islands an integer p may appear replac- 
ing 1). If Ii:, > 0 and A,, is small enough the orbits 
around the corresponding f:n-resonance can be approxi- 
mately described in terms of a nonlinear pendulum but if 
Ii:, is still positive but too close to I = 0.0 or negative; 
the orbit ceases to be pendulum-like [l]. Let us assume 
that the wave frequency is such that one exactly satisfies 
the nonrelativistic cyclotron-resonance condition, w = 1.0 
(or in dimensional variables, w = w, = ]eB/mc]). The 
basic structure of the phase-space we are interested in is 
portraied in fig. 1 where we take a small enough value for 
A, such that chaos isstill absent, A, = 0.08, and P, = 1.0. 
Two major resonant island are present for small values of 
the action I, with the lowest being generated by the Zi:i 
resonance. The upper island is pendulum-like and has a 
winding 2:9. It is not primary and can be obtained with 
help of higher order Lie perturbative terms. 

Considering the fact that the structure of the 11.1 is- 
land is relatively unknown, let us focus our attention on 
it. To do that we disregard all other resonances from the 
Hamiltonian (2) to write it in the form 

H1,1 = 6Z- p712 + AoT cos q+, 

where besides w = 1.0 we have also set k = 1.0, recall- 
ing that I << 1. Time has been canonically removed, 
H -+ HI:,, S has been introduced as 6 E l/dm- 1 
(6 < 0) and n G (1 + P,“)-“/“/2. If b is very small, island 
saturation is governed by the nonlinear quadratic term in 
I. We shall call that relativistic saturation because this 
quadratic term comes from relativistic mass corrections 
[l, 61. When 161 is large island saturation is nonrelativistic 
because it is commanded by 6; then the quadratic terms 
becomes unimportant. Let us now analyze these two types 
of islands in greater detail to show that the nonrelativis- 
tic 11~1 island, unlike its relativistic counterpart or the 
pendulum-like case, is a linear island in the sense that its 
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internal frequency is only weakly dependent of the internal 
energy and on field amplitude. 

Let us start by analyzing the nonrelativistic configura- 
tion. If such is the case one can consider the influence of 
the Z2 term in a perturbative fashion. To implement this 
perturbative analysis, let us take (3) without the quadratic 
term as the unperturbed Hamiltonian. With new action- 

angle variables (2, i), defined by Z = Z + tf%p, cos Yr, + $ 
and r#~ = cot-l(cot ++-& csc +) the Hamiltonian assumes 

form 

HI:1 = ST, - f% 
86 ’ 

which is linear in the action.With help of (3) and Lie per- 
turbative theory small Z2 term can now be introduced, 
altering the Hamiltonian to the approximate form 

H1.1 = 62 - 2 - v(Z2 + 22~; + $). (5) 

From (5) one can derive the rotational frequency (s wi:i) 
for orbits around the 4.1 elliptic point: 

W’:l = 6 - 9(22 + 2p3. (6) 

which is weakly dependent both on action and field ampli- 
tude. 

Exact action-angle calculations for relativistic islands 
are more involved than in the nonrelativistic case. Ap- 
proximate calculations are done in refs. [l] and [S]. As a 
typical situation for the relativistic case, consider 6 = 0.0, 
which implies P, = 0.0 (from now one we shall be taking 
P, = 1.0 and P, = 0.0 for nonrelativistic and relativistic 
islands, respectively). Although no hyperbolic points are 
present for Pz = 0.0, the island structure,. in contrast to 
the previous case, is expected to present a stronger non- 
linear behavior in view of the fact that its saturation is 
now commanded by the quadratic term in the action. It 
is true that its nonlinearity is still not as strong as in the 
pendulum case where the frequency is a strongly vary- 
ing function which rapidly goes to zero as one approaches 
the separatrix. However, using techniques developed in [7] 
to treat internal resonant chains, we have shown [S] that 
when Pisland chains do appear within Zi,i one could ex- 
pect the presence of the usual scenario of Chirikov overlap 
[8] and infinite sequences of period doubling bifurcation. 
One intention of ours with the present work is precisely to 
check the validity of these estimates with more accurate 
numerical methods. 

Let us now see how bifurcations manifest themselves 
when studied from the perspective of a Newton-Raphson 
stability algorithm [5], which provide the stability index 
of a particular periodic orbit (o in the figures) as a func- 
tion of the perturbing parameter (A,). Stable orbits cor- 
respond to ICY < I] and ustable orbits to ]a > I]. Starting 
with P, = 1.0 in fig. 2 it is seen that, as expected, the 
external 3-island chain (12:s) does not go unstable at re- 
connection. In the figure the reconection is indicated by R 
approximately correspond to the situation where the three 
island chain is completely absorbed by the Zi,r island. This 
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Figure 1: P, = 1.0, A, = 0.08 
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Figure 2: Stability diagrams P, = 1.0 

kind of island reconnection is somewhat unexpected be- 
cause when different island chain approach each other the 
usual scenario is a Chirikov like infinite cascades of period 
doubling bifurcations [lo]-[12] Only after reconnection is 
fully completed does the $-island chain de-stabilize. In 
fact the 12:s elliptic points simply cease to exist, as indi- 
cated by the crossing of the Q = +1 axis. Such is the case 
because, as indicate in the present figure elliptic points 
collapse with the hyperbolic fixed points bifurcating from 
the central fixed point. We shall denote these hyperbolic 
points as (Zs)h because they are part of a Pisland chain 
appearing around the central fixed point. The appropriate 
theory for these internal structures is already well devel- 
oped either from the viewpoint of internal chains [7] or 
from the viewpoint of normal forms for conservative sys- 
tems [13, 141. When the central fixed point goes through 
(Y = -1 a period-2 chain denoted as Is is seen to be cre- 
ated. This chain does not undergo the usual cascade of 
period doubling bifurcations. It ceases to exist when its 
stability index crosses Q = $1. It is seen that at this 
moment the elliptic points of the island collapse with the 
two hyperbolic points of the primary Zi:z island ((Zl.z)h 
in the figures). Note that this latter kind of collision in- 
volves external (to Zi:i) hyperbolic and internal elliptic 
fixed point; in the former case the elliptic points are exter- 
nal whereas the hyperbolic points are internal. In fig. 3, 
the same sort of analysis is performed for the relativistic 
case P, = 0.0. Once again one can observe the contrast to 
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Figure 3: Stability diagrams P, = 0.0 

the previous situation. There are now two distinct Sisland 
chains; the external 12:s and an internal one denoted by 13. 
It is seen that the external one undergoes period doubling 
bifurcation long before the internal one is created. The 
point at which the external chain vanishes approximately 
corresponds to the conventional Chirikov like touching of 
the external islands 12:s and 1s:d. We did some simulations 
(not present in the figures) showing that the elliptic points 
of &:a, for instance, in fact vanishes almost simultaneously 
with those of 12:s via period doubling bifurcations. 

One could say that while transition to chaos for nonrel- 
ativistic islands is externally induced, transition to chaos 
for relativistic islands is induced both by external and in- 
ternal factors. Another and more informal way of looking 
at the process is to say that the sequence appears to be 
suppressed in the Pa = 1.0 case in view of the proximity of 
the 11:~ and 1i:i islands. The 12 island does not have the 
chance of bifurcating again before the collapse with 11:~ 
takes place. In the P, = 0.0 case where the 11:~ chain is 
located at higher values of the action I, 12 does bifurcate 
again before the li:2 hyperbolic 6xed points get too close. 

To conclude we have studied the most noticeable bifur- 
cations occurring in a low-energy relativistic system. Low- 
energy systems are relevant in the study of accelerating 
schemes and we have noticed that such a kind of system 
can be classified as nonrelativistic or relativistic, depend- 
ing on to the value of the mismatch b or the longitudinal 
momentum P,. In nonrelativistic islands where the orbits 
are saturated by linear mismatch terms, there is no hy- 
perbolic points along the island boundaries and separatrix 
reconnections can take place before any noticeable devel- 
opment of stochastic trajectories. In this case transition 
to global chaos occurs without the usual cascade of period 
doubling bifurcations. In the relativistic case where the 
lowest orbits are saturated by nonlinear mass corrections 
terms, island reconnection does not occur because external 
(to 1i:i) chains undergo period doubling sequences before 
being captured by 11~1. However, as the 11:1 boundary is 
still free of hyperbolic points, the elliptic points of some 
of the internally generated chains can collapse with hyper- 
bolic points of corresponding external chains before under- 
going the infinite cascade of period doubling bifurcations. 

This was seen when the behavior of 13 for P, = 0.0 was 
studied. This collapsing process goes on until one is about 
to start the period doubling final sequence for the central 
fixed point. At this point the nonlinearity of the island is 
strong enough to trigger the infinite cascade, in contrast 
to the previous situation. 
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