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Abstract can be stated as : 

The goal of most popular closed orbit correction algo- 
rithms is to find a set of correctors which either minimise 
the orbit deviations in a mean-squared sense or suppress 
unwanted frequencies in the orbit spectrum. In both cases 
some difficulties can be expected if, in addition, the solu- 
tion is required to satisfy certain constraints. 

Minimise 11~11 = llv - Aki 
subject to Ck = 

Ek < f 

where the m x n transfer matrix A has elements : 

A new look at the problem is presented in which con- 
straints appear quite naturally. The method is based on 
the principle that even when the desired goal is unreach- 
able, it should be useful to find a solution which approaches 
the goal as close as possible. Two algorithms are presented 
which differ only in how they measure the distance from 
the goal. In one case the II-norm is chosen, while in the 
other it is the Z, or Chebyshev norm. In both cases the 
computation is carried out using the Simplex method of 
linear programming. 

1 STATEMENT OF THE PROBLEM 

A large number of papers have already been written on 
the subject of closed orbit correction and the associated 
implementation details [l, 2, 31. In all of these the com- 
monly used correction strategies assume a single objective 
or goal which can be stated in simple terms as “... min- 
imise the rnas orbit deviation at the BPM’s . ..“. In most 
cases this is certainly adequate from both an operations 
and a beam-dynamics point of view. However, there are 
occasions when more may be required. For example, it 
could be that the orbit must follow a specific path over a 
particular section of the machine, while at the same time 
the correction dipole currents do not exceed their hard- 
ware limits and the orbit deviation is minimised over the 
rest of the machine. These constraints are not necessarily 
commensurate, which means that they cannot be directly 
combined or compared. It is also clear that they could be 
conflicting. Trade-offs must be made in the sense that sac- 
rifking the requirements on any one constraint will tend to 
produce greater returns on the others. Another scenario, 
likely to occur during machine startup or commissioning, 
is the need to reduce peak-to-peak orbit excursions in an 
essentially uncorrected machine. It will be shown that in 
a machine with suitably distributed BPM’s and correction 
dipoles (a weak condition in practice) it should be possi- 
ble to compute a unique solution at each iteration provided 
that the problem is formulated in a particular way. 

The m-dimensional column vector y contains BPM read- 
ings and the n-dimensional column vector k contains the 
unknown correction dipole strengths. The norm II.11 is 
quite arbitrary, though the discussion will be limited to 
&-norms, p = 1,2 and 00. The constraints (1.2) can be 
used to express orbit path requirements while correction 
dipole limitations can be incorporated in (1.3). Note that 
in the case of the SPS (SppS) and LEP, m > n, i.e. the 
system is overdetermined, and this will be assumed in the 
remainder of the paper. The case p = 2 i.e. least squares, 
is well documented [4, 51 and will not be considered fur- 
ther. 

With an appropriate choice of norm, the constrained closed 
orbit correction problem can be solved using algorithms 
which are well known in the management science and nu- 
merical approximation literature [6, 71. The problem is 
reformulated as extended linear programs (LP) which are 
solved either in primal or dual form using the Simplex al- 
gorithm [8]. This approach is not unknown in accelerator 
control. An early reference [9] deals with field trimming in 
a cyclotron and compares LP results with a least squares 
solution. A later paper [lo] describes the computation of 
optimum septa and bumper currents and septa positions 
for the SPS extraction system. 

2.1 The II solution 

The idea of setting approximation problems in this norm 
appears to originate with Laplace and is considered to be 
important in the analysis of data which includes gross in- 
accuracies or outliers, for the effective weight given to such 
values is smaller with any other $-norm. The LP formu- 
lation is more recent [ll, 12, 131. Recall that the II-norm 
is defined as : 

Following the usual notations, the general problem of 
correcting the closed orbit subject to (optional) constraints 

U*l) 
;:::I 

oij = 2 ti(rs) COS(lPi - Pj I + *Q) 

2 TWO ALGORITHMS 

n 

11~111 = C lril 
i=l 
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Then the closed orbit correction problem (1.1) can be re- 
stated as : 

Minimise e(u + u) 
subject to A(k’ - Ja”) + u - u = y [:*$ 

C(k’ - Id”) = 

E(k’ - k”) + u’ = f * 
g:y 

and la’, k” 2 0 
UYV 2 0 
lb’ 2 0 

The formulation of the problem is such that 

with PI denoting highest priority, and so on [6, 141. It 
follows that the scalar quantity z must be minimised with 
first priority. The formulation of the problem is such that 

so that minimi&g t is completely equivalent to minimis- 

hs Ilfllcw Note that the computational difficulty of an 
LP is approximately proportional to m’n so increased ef- 
ficiency will result from solving the problem in its dual 
form. 

q + Vi = 1% - Vi1 = /ril 

hence it it entirely equivalent to minimising llrl11. In gen- 
eral this problem will not have a unique solution [7]. Note 
that two kinds of constraints occur. Equation (2.2) de- 
fines goal constraints, which are also known as “soft 
constraints” and may be violated if necessary. Here u and 
‘I) are mdimensional column vectors which are called de- 
viation variables. At optimality at least one of the pair 
y, vi will always be sero [S]. The variable u represents 
undemchievement while v represents overachievement. 

Equations (2.3) and (2.4) define system constraints, 
which are also known as “hard constraints” and cannot be 
violated. The column vector u’ is a slack variable which 
is used to transform the inequality constraints into equa- 
tions. The variable k = k’ - k” is defined in terms of two 
nonnegative n-dimensional column vectors L’, k”. The m- 
dimensional row vector e = [l, 1, . . . . l] is used to construct 
the objective function (2.1) which must be made as small 
as possible to satisfy as closely as possible the goal con- 
straints. The remaining constraints ensure nonnegativity 
(which is not strictly necessary). 

The column vector ~1 denotes underachievement in try- 
ing to meet orbit path requirements and VI denotes over- 
achievement while exceeding correction dipole limitations. 
Both of these quantities are minimised as lower priority 
goals for obvious practical reasons. The column vectors 
u’ and v’ are merely slack and surplus variables, respec- 
tively. 

Normally each II x n submatrix of the transfer matrix 
A will have full rank and the Haar condition will be satis- 
fied. This means that the PI iteration of the LP will have 
a unipve solution [7] and it is unclear whether the lower 
priority iterations will yield anything useful. However, if 
the Haar condition is not satisfied then these additional it- 
erations could be worthwhile. The question of I, approx- 
imation subject to either general or restricted constraints 
has been examined [17, 181 and has applications in the 
design of digital filters. 

2.2 The I, solution 
The analysis of data with errors drawn from distributions 
with sharply defined extremes (as typified by the uniform 
distribution) is best carried out in this norm, for the large 
peak-to-peak excursions are not considered to be outliers 
and they must be dealt with correctly. The Chebyshev 
norm is defined as : 

lb% = m,” hl 

Using this definition the closed orbit correction problem 
(1.1) can be restated as the following ansatz : 

Early closed orbit correction experiments in the II and I,- 
norms (unconstrained) were performed on the SppS col- 
lider using codes which were NODAL [19] adaptations of 
Algol procedures [12]. These were later replaced by FOR- 
TRAN versions [15, 161 running in the NODAL environ- 
ment and included the possibility of handling constraints 
in the II case. This was used successfully to correct the or- 
bit in the SppS low-p insertions which contained correctors 
of very limited strength at high energy. The FORTRAN 
routines are now incorporated into the standard closed or- 
bit correction package COCU [2] of the SPS and LEP but 
they are not fully tested and remain only partially oper- 
ational. Small scale offline experiments using prioritised 
optimisation in the &-norm are being conducted using a 
software package for PC’s [14]. 

Miie Plx + Pau, + PSV, 
subject to A(k' - Ja”) + u - v = 1/ g 

C(k’ - la”) + uL, - v’ = d 
E(k’ - la”) +u’ -u, = f 

I::;; 

I%-u-v 2 fJ (2:9) 

and k’, Id’ 2 0 
%,Vl 2 0 
u,v 2 0 
u’, 0’ 2 0 

where I is an mx m identity matrix. In the objective func- 
tion (2.5), the terms Pk serve merely to indicate priorities, 
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Z>Ui++i 

3 IMPLEMENTATION AND STATUS 
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