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A bstrac t 

At the Advanced Photon Source (APS) it is planned to 
have an undulator test line for measuring the field qual- 
ity of the undulators. The effect of both uncorrelated and 
correlated errors is evaluated. The effect of errors is shown 
to fall inversely proportional to gamma. The effect of the 
correlated errors is found to be smaller by factor of ap- 
proximately the average value of the correlation function 
over one-half a wavelength. 

1 INTRODUCTION 

At the Advanced Photon Source an undulator test line is 
proposed for measuring the field quality of the undulators. 
These undulators will be used eventually in straight sec- 
tions of the storage ring. The test line diverts the electrons 
or positrons from the PTB transport line which carries 
beam from the positron accumulator ring to the injector 
synchrotron. While the energy of the storage ring elec- 
trons will be 7 GeV, the energy at the test line will be 
about 450 MeV. The questions one may ask are: (l)What 
is the effect of undulator errors on the beam as it moves 
through the undulator, and (2) How does this affect scale 
with the energy of the beam? A related question would 
be (3) Can these undulators be used as diagnostic tool for 
the beam at high energy? 

In order to answer the first question one has to ask about 
the type of errors one may expect in the undulators. It is 
commonly understood that the undulator errors get corre- 
lated because of the interaction with adjoining poles. How- 
ever, the exact nature of the correlation is not clear. For 
planar undulators one expects the correlation to be given 
by sinkz [l]. Therefore, for our undulator type A, which 
is three-dimensional in character, we have used three dif- 
ferent types of errors for the numerical study. These are 
(1) purely random field errors, say 6H,, attached to each 
pole, (2) errors of the type 6B, sin kz, where 68, is again 
the random error at each pole and sin kz gives the corre- 
lation of errors, and finally (3) the coefficient Be of the 
solution of the three-dimensional undulator is modified as 
Hc + bHe. The fortn of the equations of motion through 
the undulator with these errors is discussed in the section 
on numerical simulation. 

The analytic. method discussion in the sec.ond section 
starts with the Hamiltonian [‘2][3] associated with the mo- 
tion of the electrons in an undalator. The analytic c.alc.u- 
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lations have be carried out using random errors at each 
pole. The comparison with the numerical results of the 
same case are found to be in excellent agreement. 

In the end we discuss the results of the numerical simu- 
lation of the three c.ases mentioned above and compare the 
results, in the case of the random errors, with analytical 
results. 

2 ANALYTICAL METHOD 

Let { x,y,z } be the standard rectangular coordinates asso- 
ciated locally with the undulator magnet. Here z is along 
the length, y along the vertical direction, and x along the 
horizontal direction. The magnetic field in a undulator 
has been characterized by vector potential (A,,h)[2][4]. 
The vector potential characterizing the three-dimensional 
undulator magnetic field in Cartesian coordinates is given 

bya 

A, = -q cash (k,z) cash (k,y)sinkz, (1) 

A, = k& sinh (k, x) sinh (kYy) sin kz. (2) 
Y 

In Eq.(l) and Eq.(2) we have I;’ = k,’ + 1;,’ and also 
k = 2?r/l, where 1 is the cell length. Let Pe be the ini- 
tial energy, m the mass, 17 = d-, with 7 as the 
relativistic factor. Furthermore let P, = (pz + eA,) and 
Py = (py + “A,) be the canonical momenta in the x and y 
directions with p, and py the kinematic momenta. With 
these definitions we can write the Lloyd Smith Hamilto- 
nian H[2]. Next we carry out a sequence of canonical 
transformations similar to the ones suggested in p] and 
transform to coordinates {x,y,.s}. Now z = I, + zax, z = 

&-x:x, Pz = z:P,+&jP,l P-r = -z:P,+&P,, 
y = y, and Pu = Py. We furthermore expand the hy- 
perbolic. functions as power series and finally write the 
Hamiltonian to the second order. In this approximation 
the Hamiltonian H can be written as 

H = -+P; + f;] + $~cosl;r, + 
2Po 

ln Eq. (3) energy can be expressed as cPc = rnc’/dm 
and eBop = PO. 

Next consider the random dipole type errors of inte- 
grated strength $$!, centered at. the pole of the undulator, 
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where 1 = $ is the half wavelength. Under these assump- 
t,ions it, is straightforward to show that for a single error 
at the Qi1 pole the momentum change is given by 

Ap 
x 

= powijl, 
P 50 

Note that Ap, = rrac&E;y’. Integrating Eq.(4) with the 
substitution for &lx gives the contribution from a singk 
error. The contribution from random errors at different 
poles is the sum of the contribution from each pole. Thus 
calling Ax the total change we have, 

In the above equation L is the length of the undulator, Z; is 
the position of the ith pole of the undulator, and L?Lx will be 
the total displacement at the end of the undulator. Thus 
we see that the effect of the undulator errors is inversely 
proportional to ?;. For details about the above results, see 
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3 NUMERICAL SIMULATION 

The numerical simulation was carried out using the ex- 
act fquations of motion and writing a program using 
~lathematicaTM. There are three coupled set of equations 
with a mass constraint. We used the mass constraint to 

tlL obtain an expression for b , where p’ refers to the deriva- 
tivc of 13 with respect to z. We can write the equations 
<as 

*;” + &I = &-$B, + ~‘521 B, z (6) 

K y” + ii;“{ = z fpL + “I&l (7) 

PZ = ;P-“;-,l$. (8) 

Note that ,B = /T is a constant of the equations 
of motion. Differentiating Eq.(8) and using Eq.(6) and 

Eq.(7), we can eliminate t,hr t,erm 2 from Eq.(6) and 
Eq.(7). Then we obtain a coupled set of linear differen- 
tial equations with variables x and y wit,h independent pa- 
rameter z. We solved these equations numerically, using 
MathPmaticaT”, 

Three types of errors werP studied. The first one was 
the completely random error in B,. On the right-hand 
side of Eq.(B) -B, is replaced by -By + EB,, where 
6B, is randomly chosen at each pole. The second type 
of error, similar to one introduced hy [I]> changes B, to 
H, + h‘B, cos fit. The third type of error is introduced by 
changing the coefficient5” of t,hc vector potential (A,, ilY) 
t.o No + SBo. The effective vector potential satisfies the 
boundary conditions of the problem and is a very close 
sollltion. In this type of error the cornponcnts R,, H, and 
H, change, and term 6 50 is again chosen randomly at, each 
pole. 

Equations (6) t,hroilgh (X) were solved first without er- 
rnrs and latfar with errors. 

4 RESULTS 

The simulation was carried out for APS undulator type A, 
for which X = O.O33m, k, = 126.0m-‘, k, = 142.744m-‘, 
Bo = .807509 T, and the undulator length is 2.477 meters. 
The initial conditions for all the runs were z = y = 2’ = 
y’ = 0. The energy was varied from 500 MeV to 7.5 GeV. 
The simulation carried out for the undulator without er- 
rors gave 0.8 microns displacement at 500 MeV of energy. 
This displacement varies inversely with the energy. Figures 
1 through 6 show the results of the analytical calculations 
and the numerical simulations. Figures 1, 2, 3, and 6 plot 
displacement, in meters, as a function of energy given in 
terms of y. The energy value 1 on the plot corresponds to 
500 MeV, with increments of 500 MeV. Figure 5 plots the 
vertical displacement in meters, as a function of energy. 

In order to compare the analytical and numerical re- 
sults, several sets of random errors with rms values lying 
in the range of .005 to ,007 were generated. The horizonal 
displacement values at the end of the undulator were calcu- 
lated using both the methods. In each case the comparison 
was exact. The horizontal, i.e., x, displacement at the end 
of undulator varies inversely with the energy of the parti- 
cle (see Fig. 2). This is what the analytical expression in 
Eq.(5) states and what can be seen in Fig. 1. The mean 
of the absolute values of the displacements, for ten simu- 
lations, was 500 microns for the mean random errors value 
of ,006, at an energy of 500 MeV. Thus, the mean at other 
energies was 500/y. 

Figure 3 is a typical plot of the random errors chosen 
for the 650. Figure 4 is also a plot of horizontal displace- 
ment as function of energy at the end of the undulator 
for errors of type 2, i.e., errors in which 5, was replaced 
by B, + &B, cos kr. In this case again the displacement 
is inversely proportional to energy, but the displacement 
at 500 MeV is only about 3.5 microns. Similarly for error 
type 3, described earlier, the magnitude of displacement 
varies from one to five microns at 500 MeV. Again dis- 
placement falls inversely with energy. In such a situation 
these displacements will not be measurable. There is no 
displacement along the y-direction in all these cases, as 
one can see from Fig. 5. 
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