
Coupling between the Transverse and Longitudinal Motion 
in an AVF Racetrack Microtron 

J.L. Delhez, R.J. Nijboer, S.J.L. van Eijndhoven, JAM. Botman, W.J.G.M. Kleeven 
Eindhoven University of Technology 

PO Box 513, 5600 MB Eindhoven, Netherlands 

Abstract 
A study is made of racetrack microtrons of which the bend- 
ing magnets have a small azimuthally varying field (AVF) 
profile superimposed on the average main magnetic field. 
Two such microtrons are under construction at the Eind- 
hoven University of Technology. In this paper the effect 
of the AVF profile on the coupling between transverse and 
longitudinal motion in AVF racetrack microtrons is stud- 
ied. Stability conditions are derived and a comparison with 
the uncoupled case is made. 

unperturbed orbit (f=O) 

1 INTRODUCTION _.. 
The description presented in this paper is a summary of 
work reported in reference [I]. 

origin (r-2=0) x.“. 02 

The principle of applying an AVF profile on the bending 
magnets of a racetrack microtron has been described t,o a 
great extent in previous work, e.g. [2, 31. In this section, 
details relevant for the present paper are summarized. 

Figure 1: Overview of the magnet geometry. 

2 RELATIVE MOTION 

The origin of a polar coordinate system (r, 8, Z) is po- 
sitioned at the point where a reference particle enters t,he 
(righthand) dipole magnet of the racetrack microtron, see 
Fig. 1. The vertical component of the magnetic field in the 
median plane of an AVF magnet consists of a main mag- 
netic field, Bo, and an azimuth-dependent flutter profile, 
f(B), i.e. 

Bz = Bo[l+ f(B)], f(O) = 0. 
All results presented in this paper are accurate up to first 
order in (the amplitude of) the flutter profile. Such a first- 
order description suffices if the following condition is sat- 
isfied 

I 
r’z Ifc9l (g < 1 

0 ziqj . 

The reference trajectory ~(0) through the AVF magnet can 
be calculated to be 

r(B)=R(2sins-~~ef(F)sin(2B-2E)~F), (1) 

Consider the motion of an electron in a tube around the 
rrfrrence orbit. In this tube, we introduce a curvilinear co- 
ortlinat,e system I, s, t, where s is the orbital length of the 
point on the reference orbit which is nearest to the elec- 
tron. The coordinate I gives the deviation perpendicular 
to t,he reference orbit in the median plane and the coor- 
dinate z the deviation perpendicular to the median plane. 
The Hamiltonian in this coordinate system takes the form 

?I1 = iE,2 + h/t1 + x/p(s)} + eA,)2c2 

+b + e&)2c2 + (pt + eA, )“c”] I” 1 

where p’= pZZZ + pj& +p,Zz is the canonical momentum, 
A’ = A,c$ + A,e’, + A,e’, the vector potential, EO the 
electron rest energy and c the velocity of light. 

Since a general particle is assumed to deviate little from 
the reference particle, we linearize the equations of motion 
at every timet around the position of the reference particle 
(s = sref(t), z = z = 0). Note that we also have to linearize 
the coordinate system. We introduce small coordinates 
.?, i, i according to 

where R = P,,f/eBo, with Pref the linear momentum of the 
reference particle and e the elementary charge. So, R is 

x=i 
’ 

s = s*,f(t) + i, % = 2, 

 ̂P, = P,, p, = Pref(t> +A, pz = 61. 

the radius of the ‘unperturbed’ circular orbit. The above 
equation for the reference trajectory suffices to compute 

The relevant part of the vector potential at a general po- 

the orbital length, s, and the exit angle, q. The latter is 
sition, expressed in t,erms of the magnetic field and the 

given by 
coordinate system at the reference position, can be chosen 

**I2 as 

\E = -2 I ’ f(l) cosPw~. 
0 
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In order to get dimensionless quantities, a scaling trans- 
formation is applied 

5 = i/R, d = i/R, B = i/R, t = cl/R, 

IL = iL/prer, 115 = h/Pref, Fz = IjzlPref. 

Since the magnetic field is only Q-dependent, we take B as 
independent variable instead of i. From the expression for 
the reference orbit, Eq. (I), the following relation between 
F and 6’ can be found (assuming ,B = 1) 

F(B) = + 
J 

e 
df= 2[1- F(e)]&?, 

sm 13 s 
f(t) sin(X)rlF. 

This results in the following Hamiltonian with 0 as inde- 
pendent variable, already expanded up to second degree in 
the canonical variables 

x2 = [l - Jyfq] { $2 +Q,52-2i2fis +p; +fj*+ 

where 

Q,(S) = 1 + 2f(f9) - &$ =: 1 + &z(e), 

&@) = Adr, 
2 tan(e) de 

i(e) = 1 + f(B), 

all valid up to first order in f. From the Hamiltonian we 
see that the vertical motion is decoupled from the motion 
in the median plane. Therefore, the vertical motion can 
be solved independently and will not be considered in this 
paper, cf. [3]. In order to decouple the horizontal and 
longitudinal motion up to zero order (note the rcJ coupling 
term), the following transformation is applied 

..--- I z=z-pp,, pz=p,, s=s--&, p, =ji3. 

The resulting Hamiltonian gives rise to a system of differ- 
ential equations that can be written as 

dif/dO = [A + B(B)]g, x’ = (z,pz, s,F,)~, 

where A is the zero-order matrix 

0 20 0 

A= 
-2 0 0 0 

H--~ 

0 0 0 -2 
0 00 0 

and the non-zero elements of B (all first order) are 

h2(q = -2qq, B21(e) = 2p7(0) - Q,(e)], 

B24(f4 = w(e) - &(qi, B31(e) = -h4v), 

B34(e) = 2[q) - v(e) + &,(e)]. 

This system is equivalent to the Volterra integral equation 

i?(e) = eeAX’(o) + 
J 

* e’B-“AB(<)X’([)d& 
0 

The solution to this equation can be found by succcs- 
sive substitution. Starting wit.h the initial approximation 

X = 0, the transition matrix up to first order in f turns 
out to be 

eeA + eeA 
J 

’ e-CA L?(<)efAd[. 
0 

Transforming this transfer matrix back to the physical 
tilde-variables gives as the final solut,ion 

PI-‘(e) = [u(e) + v(e)]?(o), P = (ids, if,jqT, 

with U(0) = 

( 

cos(2e) sin(28) 0 I - cos(2e) 
- sin(20) cos(2e) 0 sin{ 28) 
- sin(28) -1 + cos(2e) 1 -28 +sin(20) ’ 

0 0 0 1 i 

and the non-zero elements of V are given by 

h(e) = Jll(qc + J21(qs, 

v12(e) = J12(qc + J22(e)s, 

h,(e) = J14(e)c + J24p)s - hte)c - Jzl(qs, 

1/2,(e) = -h(e)s + J,de)c, 

vz2(e) = --h(e)s + J,,(qc, 

v24(e) = -J14(e)s + J24(e)c + hp)s - ww, 

k(e) = -Jll(qs + Jzltfqc + J31(q> 

b2(q = -J12(qs + J,,(qc + J32tq, 

h4(e) = -J14(e)s + Ja4(fqc + h(qs - J21(qc + 

J34q - qI3l 03 

where S = sin(2B), C = cos(2B), and 

.h(q = 
J 

oe ~dE)sin(Wd~, 

J12(e) = 
J 

oe { ck(m - cos2(4t)1 - 2W)}dt, 

J 

e 
J,,(e) = - B24(t) sinCX)dt, 

0 

J2*(fq = 
J 

oe { -0zw + cos2(4~)1+ 2f'(t)} dt, 

Jzz(q = -h(e), 

J 

e 
J24(e) = B24(t) cosP94, 

J3,(q = -:24p), 

,J3,(e) = J14(q1 

J34(q = 
J 

oe b&P<. 

The solution (U + V) describes the evolution of the 
deviat,ion-vector ? as a function of 0 in a single magnet. 
In practice, one is also interested in the transfer matrix for 
a complete revolution through the racetrack microtron. In 
this case, the reference orbit needs to be closed. For a gen- 
eral profile f(e) this may not be the case, since the exit 
angle 4 (see Eq. (2)) may be unequal to zero. In order to 
assure that the orhit,s are actually closed, even if Q # 0, 
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Figure 2: Depiction of one complete revolution. 

the magnets are rotated through the median plane over 
the angle 7 = lk/2 (the ‘tilt angle’; for details, cf. [3]). 
This magnet rotation gives rise to additional quadrupoles 
due to edge focusing effects. 

3 STABILITY CONDITIONS 

Now, to obtain the transfer matrix for a full revolution, the 
following separate transfer matrices need to be multiplied 
(starting from the centre of the accelerating cavity, point 
A in Fig. 2): (i) half the driftspace, including the right- 
hand half of the cavity (A to B); (ii) the righthand rotated 
AVF magnet (B to C); (iii) the full driftspace (C t,o E); 
(iv) the lefthand rotated AVF magnet in reversed direc- 
tion (E to F); and finally (v) half the driftspace, including 
the lefthand half of the cavity (F to A). In the horizontal 
phase plane, the cavity is assumed to have no effect (i.e.: 
the adiabatic damping and the weak focusing lens are ne- 
glected); in the longitudinal phase plane, the well-known 
effect of a phase-dependent energy gain (linearized around 
the synchronous phase I$~) is taken into account. We write 
the transition matrix for one complete revolution (A to A) 
as 

yA,l = &,YA,o = 
N ZS,ll pv X8,12 - 
N 

IN > 
yA,O, 

x1,21 Zd ,22 

where iV,,,ij are 2 x 2 matrices. After some computations 
it turns out that NC,,12 = 0. This implies t,hat the eigen- 
values of N,, (which are decisive for beam stability) are 
equal to the eigenvalues of Nss,ll and NrJ,22. Since the 
determinant of both these matrices equals unity (adiabatic 
damping neglected), the stability of the motion is deter- 
mined by the well-known trace-criterion: 

l~(&,,ll)l < 2, lWL,22)1 < 2 

This yields 
O<?i+4r<2RIL, (3) 

0 < tan(4,) < 2/nv, (4 

where v is the incremental harmonic number (pathlengt,h 
difference between two successive orbits in the racet*rack 
microtron, divided by the cavity resonant wavelength), 
and 

*” a = -2 
J 

f(t) d< 
0 is@’ 

Note that these conditions are conditions for the stability 
of one orbit (i.e. one value of R). 

In Ineq. (4), the path lengthening due to the flutter pro- 
file has been incorporated explicitely by demanding that 
Y remains fixed (integer). This can be accomplished by 
a slight change of the main magnetic induction in the 
bending magnets, Bo. As a result, Ineq. (4) is exactly 
equal to the well-known longitudinal stability condition for 
microtrons. Apparently, the presence of the AVF profile 
has not altered the synchrotron tune, although the local 
phase/energy oscillation amplitudes will be changed. 

Also Ineq. (3) is exactly equal to the result obtained in 
previous work [3], where the energy spread and longitudi- 
nal dimension of the beam were neglected. The horizontal 
stability condition (3) needs to be combined with the sta- 
bility condition for vertical motion [3] before an ideal AVF 
profile can be determined. Since the horizontal stability 
condition is not altered by the transverse/longitudinal cou- 
pling (although local betatron oscillation amplitudes will 
have changed), results obtained in previous work are still 
valid. Hence, the magnet rotation remains an essential in- 
gredient for the obtainment of transverse beam stability in 
an AVF racetrack microtron. 

It was found that NZ5,12 = 0. This means that the 
horizontal motion for one revolution from the middle of 
the cavity to the middle of the cavity does not depend on 
the longitudinal motion, So, for the horizontal motion, 
it, suffices to consider an eigenellipse in a two-dimensional 
phase plane. However, the longitudinal motion for one 
revolution depends on the horizontal motion (Nz8,21 # 
0), so for the stability of the longitudinal motion, it is 
necessary to consider the eigenellipsoid in four-dimensional 
phase space. 

One final remark. We examined stability of a single 
revolution through the racetrack microtron. For this, we 
considered the motion from the middle of the cavity to the 
middle of the cavity and saw that the particle deviations 
can be kept within certain bounds at this point. From the 
description presented, it cannot be estimated how large 
the deviations will become at other points of the orbit - 
it is difficult to compute the beta-function as a function of 
orbit length analytically. Additionally, the eigenellipsoids 
change with increasing R. Therefore, it is necessary to 
calculate the beam sizes and machine acceptance numer- 
ically (using the transfer matrices in this paper) so as to 
determine the best AVF profile. 

PI 

PI 
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