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In this paper we present for all who are interested in 
beam stabilities some recent results obtained in the 
theoretical studies of the kind problems. The general results 
concerning the dynamical systems show that between the 
stable state and chaotic behaviour there is a zone of 
transition where a beam present an oscillating stability. The 
main goal of our work is the implementation for the concrete 
physical systems of some abstract mathematical notions, like 
attractors and bifurcation, used in the studies on the stability 
of a general dynamical system. 

1. INTRODUCTION 

The study of some beams made of charged particles 
represents one of the key problems in the high energy 
physics. 

To maintain the beam in a confined form 
presupposes from a theoretical point of view a study on the 
stability of the beam considered as a dynamical system. 

In the theory of systems one can analyse the 
stability of the system orbits - which studies the behaviour of 
the system when its initial state modifies, keeping unchanged 
the parametres that describe it and the structural stability that 
describes the behaviour of the system when the characteristic 
parametres modify.The key words in this study are: 
attracting set, attractor, bifurcation. 

The main goal of our work is the implementationof 
these abstract notions for some concrete physical systems. 

We study in $2 and 93 a concrete system described 
by: 

(1) 
K’ +Eti@(pX2 - 1) i; +0$X = Ctp(t) 

which gives form to the nonlinear time development of 
unstable drift waves in Q - machine plasmas. 

The same equation can describe a system consisting 
of a high - frequency oscilloscope operated in the x-y mode 
and a photodiode, which detects the light emitted by the 
trace while feeling the signal back to the oscilloscope. 

In [1] Levinsen makes a numerical study of the 
system described by: 

1. Dept. of Mathematics 
2. Dept. of Theoretical Physics 

and observes that in this case there are limit cycles evolving 
into chaos through the Feigenbaum bifurcation route, 
characterised by the existence of some stable intermediary 
structures, and low - frequency relaxation, oscillations that 
can be phaselocked to extremal signals. For: 

=-p:+&‘(t), A=O,G=-E~,B=w; 

we obtain the equation (1). 
By means of methods different from those of 

Levinsen, we shall make a theoretical study for (1) as far as 
this is possible. 

Our sketch of this Van der Pol - type system will 
show how the relative simple planar phase portrait of the 
unforced system gives way to the more complex picture of 
the Poincare map associated with the periodically forced 
problem. 

2. THE STUDY OF THE UNFORCED SYSTEM 

The aim of the study of the unforced system 
described by 

Y -&( 1 - px2>wa ;r +c$ ;= 0 (2) 

is to make the phaseportrait of the system, to obtain some 
information concerning the stability of equilibria and to 
observe the bifurcations. 

To solve the equation one can use one of the three 
below given methods: 
a) a multiple-time-scale perturbation (explored in [2]).Using 
the standard procedure of this method, to lowest order 
[x - x(0)]we obtain: 

where 4 is the initial (t,=O) amplitude. 
b)the average potential - concept introduced by M.Kuramitzu 
[3] for solving the problem of a multimode oscillator with 
one active element.The voltage current characteristic of the 
active element is assumed by Kuramitzu to be described by 
i=g(v)= p(-v + v3/3) that is equivalent to our equation with 
a=pandP=l. 
c)the classical average method [4] 
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The equation (2) is equivalent to the following 
system 

r i= y - &WI@X3/3 -X) 

; =-0;x 

If we make the invertible transformation: 

11 (I( cos coot X 
= 

- +noot 

V -sin mat li 1 -&coSWot y 

and we consider E << 1 the averaged system is: 

1 
;=E~u(l--p~)+O(EZ) 

;+(, -p!+ 
If we use the polar coordinates 

u=rcos@ 
v=rsinQ 

we obtain: 

and by elementary calculus one can observe that this result is 
the same as that one obtained by the multiple time-scale 
method. 
The vector field (r( I- pr*/4), 0) has three equilibria: 

(O?OL [$,o], (-$>O] 
But we may not forget that r20. The orbits of the system in 
polar coordinates are described in fig.1 and in cartezian 
coordinates in fig.2. 

It results that there is an attracting set,C(O, 2/Pm)whose 
basin of attraction is R2{(0, 0)) .The single periodic orbit is 
C(0,2/f11n) which is asymptotically stable.This circle is the 
limit set of any orbit which starts from a point different from 
(O,O).The single equilibrium of the system is (O,O).Using the 
Liapunov function 

V(x, y) = @ix;+ y2 
we obtain: 

~(x,y)=yx2(3-px2)>o 

in the neighbourhood of (O,O), so (0,O) is unstable.Here 
appair a pseudo Hopf bifurcation. The bifurcation value is 
p= 0. If p< 0, (0,O) is instable and there are not periodic 
orbits. 
If j3 > 0, (0,O) is instable and there is a periodic orbit, the 
circle C(0,2/PL3.The diagram of the bifurcation is describe 
in fig.3 

’ figure3 

We must observe that B < 0 has no physical meaning, but 
from a mathematical point of view it can be interesting. 

3. THE STUDY OF THE FORCED OSCILATOR 

The basic system can be written in the form 

; +&f(x) ; +w;x = crp(t) 
where p : R -+R is T - periodic 
If will be convenient to rewrite (5) as a system: 

;r= y - uqx) 
;= ap(t) - 00x where Q’(x) = f(x) 

. 
t= 1 

Letting y=y/~ we obtain the singulary perturbed problem 

(5) 

i= E(Y - Q(x)) 

;= k -co;x + clp(t) 
1 

If f(x)=@x2 - l)oo X3 we can use Q(x) = (pi - X)WO . For 

the sake of simplicity we assume that 
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p(t) = 
1, t E [nT,(n + 1/2)T) 

-1, t E [n + 1/2T, (n + l)T) 
Fixing E sufficiently large one can possibly fiid a “trapping 
region” RcR’ so that the vector field 

is always directed into R. 
To study the system we can use the Poincarb map. 
Thus taking a cross section 

C = {(x, y, 0), (x, y) E R*} the Poincart map P, of (5) maps 
R into itself. Since P(R)cR we can define an attracting set 

Act =“c P3N 

After a reasonable (say n=50) of iterations, the set 

A; = n {P:(R), k = O,n) 

is a thin annulus, the sides of which lie near the curve 
y=@(x), so it is reasonable to think that the equilibria which 
lie on the curve y=Q (x) are attractors. 

Thus since in each circle (don’t forget that p is T 
periodic) the__ point move_ vertic$e a distance 

Y(t) - Y(o) = 4 j Cfp(t) 400 ] x(t)] = -2 1 x(t)dt E G(i) 
0 0 0 

We can select two rectangle R+,R- c A”, such that the 
upper boundary of R’ is mapped into the lower boundary of 
R- by Pa. Moreover, the rapid contraction implies that every 
point in R ultimately enter in R+ under iteration of P, _ 

Due the 
(CD(x) = 4(-x) and p(t $-y;(t)) p:,ffi: to s:;;: 

single time T jump map Fu : R+ -+ R- 

To mark this map continous we identify the upper and lower 
edges. In doing so we loose track whether points have 
returned after 2ktl or 2k-1 iterates. Levi shows (in 1981) 
that, if the map has two stable fixed points, then one 
corresponds to an orbit of 2k+l period and the other to an 
orbit of 2k-1 period. 

However more than that can be obtained: in 
particular we note that the folding implies that Aa cannot be 
a simple closed curve. 

Since E >> 1, the contraction of each application of 
the Poincarh mar is extremly rapid (points approach the 
attractor like e-a ‘) so it appears reasonable to replace the 
“reduced” annulus map by a noninvertible map defined on a 
circle (because of periodicity) f, : S1 -+ S1. and this can be 
studied numerically. 
using complicate techniques (symbolic dynamics, 
topological conjugacy) one can obtain periodic orbits, orbits 
which simply converge to the sink, the existence of an 
unstable invariants set where there appears the sensitive 
dependence of initial conditions, so chaos itself. 
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