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Abstract

Theory of multi-bunch resistive wall instability damping
using a feedback system with a digital filter is developed.
The system of coupling equations is obtained for descrip-
tion of bunched beam motion including the wake fields for
beamn and the residual currents in feedback devices. To
solve equations, the Z-transform method and special co-
ordinates transformation are used. The general solutions
and eigen frequencies are found. The influence of feedback
frequency band on the tune shift is discussed.

1 INTRODUCTION

Transverse feedback systems (TFS) are used in syn-
chrotrons to damp the coherent transverse beam oscilla-
tions. In these systems the kicker (DK) corrects the beam
angle according to the beam deviation from the closed or-
bit in the pick-up (PU) location at each turn. A classical
TFS consists of one PU and one DK per plane. These
systems have been widely used and provide an amplitude
decrease up to 25% per revolution [1]. In order to sup-
press fast resistive wall instability in UNK-1 (Protvino,
Russia) [2], a more effective system is studied and devel-
oped {3]. Tt consists of two PUs and two DKs per plane
connected by a feedback circuit with a digital filter and de-
lay. This paper is based on studies of TFS for UNK-1 [3]
and LHC [4], and the influence of the kicker parameters
on multi-bunch instability damping is analysed.

2 THEORY

The description is based on the theory [5] of multi-
bunch resistive wall instability damping where a standard
model [7] is used for a wake field dependent only on the
distance between bunches.

2.1 Basic Equations

In accordance with [5], the bunch dynamic equation of
the transverse coherent motion for the deviation from the
closed orbit zg[n,s] at the n-th turn for the k-th bunch
can be written as
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where K (s) is a focusing strength, Qo is a machine tune,
R =Cy/27, and Cy is a circumference of the closed orbit.

The wake field force [5] is
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where M is a number of bunches. Coefficients AQy; 1n
accordance with [7] are
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where o, and h,, are defined in [7, 5]; Asg; is a distance
between bunches. The parameter v is
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where Ny is a number of particles per bunch; 4 is a vacuum
tube radius; 8, is a value of average f-function. Because
0 < 5 < Cy, then due to the periodicity in the circular
accelerator the following equation can be written

)?k[n,s+Co]=X'k[n+1>3]a (4)

where )?k is a column matrix in which the first element is
zg[n, s] and the second one is z}[n, s].

Equation (2) has a general form for a wake field force.
A simpler model will be used further. It will be assumed
that the distances between bunches are equal. In this case
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2.2 Feedback

A feedback path consists of a pick-up, a digital filter and
amplifiers with a gain K., and a kicker with inductance
Lk and resistance Ry. The voltage after the digital filter
and amplifiers is proportional to the bunch deviation:

Vi[n] = Sp Y Ka[mlai[n = m, sp]. (6)
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For this k-th bunch at n-th turn the beam angle is changed
after a kicker by

Sk
Bk Bp

where the amplitude of the current pulse in the kicker is

Azi[n] =

R I[n], (7)
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7 < Tp/M is the current pulse duration in the kicker, and
67 < 1 is a delay between a voltage jump and a kick.

2.3 (eneral Solution

The Z-transform approach is used to obtain a general so-
lution. This transformation is

Fzs) =Y fn,slz
n=0

It gives for (3) and (4):
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Here Xi[0,s] is a column matrix determining the k-th
bunch initial state after injection. A column matrix
Xk(z 3) consists of the elements Ty (2, s) and Z%(z, ). Let
us introduce a column matrix Y(z s) with M elements Ty.
After Z—transformation in (2) and in (6,7,8) the Eq.(1) can
be written as
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Here () is a matrix M x M with elements

@y = e (-Sta), <k
@y = oo (-2 0), g2k ay)

Let us transform ¥ to new variables %,, being elements of
a column matrix Wz, s):
Inz
§ e .
2T

After this transformation in Eq.(12) the system of inde-
pendent M equations for ¥, is obtained:
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where
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The gain [6] for a digital filter of the first order and a
wide-band amplifier with a gain [K] is

z+a1

SpSkKa(z) = K], (16)
Egs. (14) are the same as in [4] for a coasting beam. The
solution is fully determined by eigenvalues z(,)x that can
be found from equation

zfn)k — Z(n)kTrﬁn(Z(n)k) + det /M\n(Z(n)k) =0, (17)
where
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Here ﬁo”gi) is the unperturbed revolution matrix from
point sp; M (z; sp+ Co, sk) is the transfer matrix from
sg to sp + Co; T is 2 x 2 matrix in which 75, = 1 and
the other elements are zero. For all these matrices the
phase advances must be calculated for the tune @, that
in accordance with (14) is
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The motion of the bunches is stable if
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Figure 1: Dy dependencies on JK|fo.
ReQo = 70.31; |Im@Q| = 0.01; Revpr = 140.57.

3 RESULTS
It was found in [6] that for a classical feedback the Eq.(17)

is
22— (2 cos(27Qn) + Iz(z) sin(27Q,, — ’l/)pK)) 2+

+1 — K(z)sin ¢pg = 0, (19)

where ¥pg is a phase advance from PU to DK. Multi-

bunch instabilities due to ), dependencies (18) are ana-
lyzed in [5]. It was found that the well-known modes

wp = (1% Qnlwo
correspond to such values of @, in (18) that
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The problem of a beam stability and the peculiarities of
Eq.(19) solutions are discussed in [4, 6] for TFS with a
digital filter and Lg = 0. But if Lg > 0, then additional
criteria for the beam stability will have place. The beam
stability will be analysed further for a kicker with Lg > 0.

3.1 Single Bunch Instability Damping
For a single bunch (M = 1) one obtains in (15):

_(z4a)z+ (fiffo — 1) exp(—ak)
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So we get in (19) the equation of the fourth power for z;.
As arule, fo ~ fi. Hence for the kicker with Lg > 0 the
new solution z4 of (19) corresponds to the solutions with
recursive filter in feedback circuit. Fig.1 shows Dy = |z;]
dependencies on |K|fs when the phase advance from PU
to DK is adjusted closely to an odd number of 7/2 radians.
The solid curves 1 and 2 correspond to the oscillations with
the tune in the neighbourhood of Qg. The dotted curve 3
corresponds to the new root determined by the IIR-filter
parameters, The new oscillation mode (curve 4) is con-
ditioned with Lg > 0. To provide the independence on

|K| of the feedback action on the closed orbit displace-
ment and for a better suppression of noise, it is necessary
to set a; = —1 [4]. The parameter b; is chosen to opti-
mize the damping factor (b, = 0.66 in Fig.1). Because Dy
depends on |K|fo, the kicker parameters Lx and Rx are
chosen to minimize the gain |K| and to increase f up to 1.
The influence of the fourth solution on the stability region
1s excluded by chosing exp(—ax) value (it equals 0.14 in
Fig.1).

3.2 Multi-Bunch Instability Damping

Taking into account (20), for a large number of bunches

we get:
z+a
1
z—b ( -

where fy ~ f) is assumed. Hence the influence of Lk on a
beam stability will be small if M1k < Ty. In this case the
stability criteria for a small |K| are

MTK
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So a phase shift due to Lx must be taken into account.
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