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AlAStraCt The wake field force [5] is 

Theory of multi-bunch resistive wall instability damping 
using a feedback system with a digital filter is developed. 
The system of coupling equations is obtained for descrip- 
tion of bunched beam motion including the wake fields for 
bearn and the residual currents in feedback devices. To 
solve equations, the Z-transform method and special co- 
ordinates transformation are used. The general solutions 
and eigen frequencies are found. The influence of feedback 
frequency band on the tune shift is discussed. 
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1 INTRODUCTION 

where M is a number of bunches. Coefficients AQk, in 
accordance with [7] are 

Transverse feedback systems (TFS) are used in syn- 
chrotrons to damp the coherent transverse beam oscilla- 
tions. In t,hese systems the kicker (DK) corrects the beam 
angle according to the beam deviation from the closed or- 
bit in the pick-up (PU) location at each turn. A classical 
TFS consists of one PU and one DK per plane. These 
systems have been widely used and provide an amplitude 
decrease up to 25%’ per revolution [l]. In order to sup- 
press fast resistive wall instability in UNK-1 (Protvino, 
Russia) [2], a more effective system is studied and devel- 
oped [3]. It, consist,s of t,wo PUS and two DKs per plane 
connected by a feedback circuit with a digital filter and de- 
lay. This paper is based on studies of TFS for UNK-1 [3] 
and LIIC [4], and the influence of the kicker parameters 
on mult,i-bunch instability damping is analysed. 

Wkjb, Astjl = 

where Q, and h, are defined in [7, 51; Ask> is a distance 
between bunches. The parameter ub is 

,I% ‘-p Nb 
vb = ZTYO b.2) 

where ivb is a number of particles per bunch; b is a vacuum 
tube radius; PC is a value of average ,&function. Because 
0 < s < CO, then due to the periodicity in the circular 
accelerator the following equation can be written 

2 THEORY 

The description is based on the theory [5] of multi- 
bunch resistive wall instability damping where a standard 
rnodel [7] is used for a wake field dependent, only on the 
distance bct,ween bunches. 

where xk is a column matrix in which the first element is 
xk[n, s] and the second one is $[n, s]. 

Equation (2) has a general form for a wake field force. 
A simpler model will be used further. It will be assumed 
that the distances between bunches are equal. In this case 

2.1 Basic Equations - = n-j, bj 
co M 

In accordance with [5], the bunch dynamic equat,ion of 
the transverse coherent motion for the deviation from the 
closed orbit ;r,[n,s] at the n-th turn for the k-th bunch 
can be written as 

Ask, M + k - j 
- = 

CC! M ' 
j > k. (5) 

2.2 Feedback 

[$+A+)] Zk[nrS]= 

= -$[n. s] + Azr,[n]S(s - SK), (1) 

where l<(s) is a focusing strength, &s is a machine tune, 
R = C7/2~. and Ce is a circumference of the closed orbit,. 

(3) 

Z2t2 
VP = 4rco Am3 ’ 

(4) 

j < k, 

A feedback path consists of a pick-up, a digital filter and 
amplifiers with a gain K,, and a kicker with inductance 
LK and resistance RK. The voltage after the digital filter 
and amplifiers is proportional to the bunch deviation: 

I’k[R] = 5-p 2 K,[m]xk[[n - m, Sp]. (6) 
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For this k-th bunch at n-th turn the beam angle is changed 
after a kicker by 

Ad&] = &RKIkbl, (7) 

where the amplitude of the current pulse in the kicker is 

Ib[n+l]=&vk[n+l]+j& “g&n]x 
[ m=Oj=l 

x exp 
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(rK - (n - n)rxh. )I . (8) 

Here 

ST 
fo=l-exp -- ; ( > TK 

fI=exp($)-exp(-E): 2; (9) CyK = - 

r 5 ‘To/M is the current, pulse duration in the kicker, and 
ST < T is a delay between a voltage jump and a kick. 

2.3 General Solution 

The Z-transform approach is used to obtain a general so- 
lution. This transformation is 

f”(*, s) = 5 f[n, S]*-n. 
n=O 

It gives for (3) and (4): 

Aakj(Z, ASkj) = 

-2Ub 2 ’ hm m=l z - ev(-am) 
exp (-$ch) ; (lo) 

ji,(Z, s + CO) = &+,s) - Zjik[O; S]. (11) 

Here z:k[O, s] is a column matrix determining the k-th 
Lunch initial state after injection. A column matrix 
&(Z, s) consists of the elements zk(,?, s) and ?;(.z, 8). Let 
us introduce a column matrix Y(z, s) with M elements Z:k. 
After Z-transformation in (2) and in (6,7,8) the Eq.(l) can 
be written as 

K 

-y -g- z T(;;;$m)] ?(z, s) = 
m=l 

= sK;;K:y$) foT + 

- [ 

+ 
z - exp(-aK) 

?(z, sp)h(s - SK). (12) 

Here c(a) is a matrix M x M with elements 

(?ca))kj = zcxp(-?a), j<k; 

(C((Q))~~ = exp (-“:i-j*), j> k. (13) 

Let us transform jak to new variables Z,, being elements of 
a column matrix G(z, s): 

i%(z,s)=F~(z,s); ,,=exp(-i$(n-ig)). 

After this transformation in Eq.(12) the system of inde- 
pendent M equations for ‘;, is obtained: 

1 
-$ + K(s) + $ AQo - 

( 

-thb 2 
L 

m=l exp(i* + *) - 1 >I ir, = 
m = -:,-,((z, Sp)6(6 - SK), 

J;a;cap 
(14) 

where 

i-i(z) = spsKk&) f0 + 
i 

fl 

+exp(i* + --&JJ=) - 1 ) 
(15) 

The gain [6] for a digital filter of the first order and a 
wide-band amplifier with a gain IKI is 

SPSK K,(z) = SIKI. 06) 

Eqs. (14) are the same as in [4] for a coasting beam. The 
solution is fully determined by eigenvalues Z(“)k that can 
be found from equation 

ztnjk - qnpnfk(qnp) + det%(q,)k) = 0, (17) 

where 

G,(z) = iGo&) + i%(t) - 
----M,(z;sp +CO,SK)? 
xf%TiF 

Here 6&,(z) is the unperturbed revolution matrix from 
point sp; &&(r; sp + CO, SK) iS the transfer matrix from 
SK to sp + Co; ? is 2 x 2 matrix in which Tzl = 1 and 
the other elements are zero. For all these matrices the 
phase advances must be calculated for the tune Qn that 
in accordance with (14) is 

Q; = 0; + 2QoAQo - 

-4&ovb 2 
hrn 

m=l exp(ig + v) - 1’ 
(18) 

The motion of the bunches is stable if 

b(n)kl 5 1. 
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Figure 1: Dk dependencies on lK\fc. 
ReQo = 70.31; IImQI = 0.01; Re$,pK = 140.5x. 

3 RESULTS 

It was found in [S] that for a classical feedback the Eq.( 17) 
is 

2’ - (2 cos(2aQ,) + k(z) sin(2aQ, - $p,)) 2 + 

+l - k(z)sin$pK = 0, (19) 

where GpK is a phase advance from PU to DK. Multi- 
bunch instabilities due to Qn dependencies (18) are ana- 
lyzed in [5]. It was found that the well-known modes 

wn = (n ic Qn)wo 

correspond to such values of Qn in (18) that 

i2~n + in 2 = iw,To. (20) 

The problem of a beam stability and the peculiarities of 
Eq.(19) solutions are discussed in [4, 61 for TFS with a 
digital filter and LK = 0. But if LK > 0, then additional 
critu-ia for the beam stability will have place. The beam 
stability will be analysed further for a kicker with LK > 0. 

3.1 Single Bunch Instability Damping 

For a single bunch (&ii = 1) one obtains in (15): 

Kcz, = Cz + al)[z + (filfo - l)exp(-a#)] ,K,fo. 
(2 - h)[z - exp(-arK)] 

So we get in (19) the equation of the fourth power for Tk. 
As a rule, fc N fl. Hence for the kicker with LK > 0 the 
new solution z4 of (19) corresponds to the solut.ions with 
recursiv? filter in feedback circuit. Fig.1 shows Dk = lfkl 
deppndrncies on IKlfo when the phase advance from PU 
to DK is adjusted closely to an odd number of ;r/2 radians. 
The solid curves 1 and 2 correspond to the oscillations with 
the tune in the neighbourhood of Qo. The dotted curve 3 
corresponds t,o the new root determined by the IIR-filter 
parameters. ‘rhe new oscillation mode (curve 4) is con- 
dit,ioned with 1)~ > 0. To provide the independence on 

IKI of the feedback action on the closed orbit displace- 
ment and for a better suppression of noise, it is necessary 
to set al = -1 (41. The parameter bl is chosen to opti- 
mize the damping factor (b, = 0.66 in Fig.1). Because Dk 
depends on IK/fo, the kicker parameters LK and RK are 
chosen to minimize the gain IK( and to increase fo up to 1. 
The influence of the fourth solution on the stability region 
is excluded by chasing exp(-&K) value (it equals 0.14 in 
Fig.1). 

3.2 Multi-Bunch Instability Damping 

Taking into account (20), for a large number of bunches 
we get: 

Mrx 
(1 + iwk TK)To > 

IKlfo, 

where fo N fl is assumed. Hence the influence of LK on a 
beam stability will be small if MTK < TO. In this case the 
stability criteria for a small /KI are 

f IKlfo sin (Re$pK f l~~~~~o) > 2rIIrnQI 

So a phase shift due to LK must be taken into account. 
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