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Abstract

In Sacherer integral equation, the beam line density
is expanded on the phase deviation @, generating a
Hankel spectrum, rather than on the time, which
generates a Fourier spectrum. This is a natural
choice to deal with the particle evolution in phase
space, it however causes complications whenever the
impedance corresponding to the spectrum has to be
evaluated. In this article, the line density expansion
on ¢ is shown to be equivalent to a beam time
modulation under an acceptable condition. Therefore
for a Hankel spectrum, a number of sidebands, and
the corresponding impedance as well, will be
involved. For wideband resonators, it is shown that
the original Sacherer solution is adequate. For nar-

rowband resonators, the solution had been
compromised, therefore a modification may be
needed.

1. SACHERER INTEGRAL EQUATION

Consider the Vlasov equation,
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where ¥ (¢,8,t) is the normalized phase space den-
sity, and ¢ is the phase deviation of the particle.
Taking the polar phase space co-ordinates (r,f),

which are related with the phase space co-ordinates
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where wg is the incoherent synchrotron frequency,
the phase space density can be written as a large
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stationary 1, and a small perturbation part ¥,
which oscillates with the coherent frequency we,

P (r,0,t) = ¥o(r,0) + ¢p(r,0)ejwct

The linearized Vlasov equation therefore is,
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where V is the total RF voltage, ¢5 is the synchro-
nous phase, and V,{¢#) represents the voltage of per-
turbation. Since the perturbation distribution satis-
fying (1.5) must be periodic in @ with period 2w,
therefore it can be written as [1,2],

Y, (r.0) =

m
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where R("")(r) is the radial function with the m'th

azimuthal mode. The corresponding line density is
defined as,

NO) = [ 0,(dd/us) ddfws  (17)

To solve the equation (1.5}, the line density is
Fourier expanded on the variable ¢ as [1,2],

A9) = = 3 A(p)ed
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where the spectrum A(p) is

Mp) = [ A@8)e~74 ag (19)
Using (1.8}, one obtains, .
V,0)=—Io 3 Z(p)Alp)e??  (1.10)
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where I is the beam average current and Z(p) is
the impedance corresponding to the spectrum A(p).
Substituting (1.6) and (1.10) into (1.5), we get,
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Multiplying by e~ Im 0, and integrating over 6 from
0 to 27, we get,
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where the identities
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have been used, and the mode coupling is neglected
such that A(p) can be replaced by A™)(p), which
will be shown in the next section as a Hankel spec-
trum of the corresponding radial function.

The equation (1.12) is the Sacherer integral equation
without taking into account of mode coupling and
frequency spread.

2. FOURIER EXPANSION ON ¢

The line density defined in (1.7) is in general com-
plex, which is a result of the definition of the pertur-
bation distribution in (1.6), where the inclusion of
negative m' plus the arbitrary scaling of the radial
function allows a complete description of the possi-
ble solution of equation (1.5). If we define the line
density of the mth azimuthal mode as [3],
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then the spectrum is
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We observe from equation (2.2? that the Fourier
spectrum of the line density A" (¢) with respect to
the variable ¢ is the mth order Hankel spectrum of
the radial function R("™)(r) [2,3].

Conventionally, a Fourier transform is based on the
time t as follows,
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F(t) = -él—;f_:F(w)ej‘”tdw (2.3)

Fw)= [ _f(t)e~ 1t ar

where f(t) is considered a real function, and there-
fore the spectrum F{w) is complex. Usually an
impedance is defined in the same way with respect
to the wake function on the time {. By examing the
equation (1.10), one observes that if a conventional
impedance is used, then the use of Hankel spectrum
in the same equation is inadequate. In other words,
there are two ways to use (1.10). One way is to have
the wake function, and the impedance as well,
defined on the variable ¢, and another way is to use
the conventional impedance and to find an
equivalent of the Hankel spectrum on the time ¢.
We follow the second approach.

(24)

Consider a general case where the time domain func-
tion is f (¢}, the Fourier spectrum F(w) is shown in
(2.4). If f () is modulated in time as,

Ji(t) = f(t + 7/wg coswgt) (2.5)

where 7 is the delay from the equilibrium beam pass-
ing time, and wy is the beam revolution frequency,
then the Fourier spectrum becomes,

Fy(w) = Fw)ed7/@o osost
—F) Y Fhler/ee™ st (26)
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Using (2.3), we get,
£i(0) = ~2—11—r—f_:F,(w)ej“’tdw
= 5P 8 e g0 @)

Consider the line density represented by the Fourier
expansion on the variable ¢ in (1.8). The complete
signal may be written as,
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The equivalent time domain signal can be found by
considering,

= rcosf = rcoswgt

(2.9)

Therefore using
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the equation (2.8) can be written as,
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The equations (2.7) and (2.11) can be made identi-
cal, provided we can assume,
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Physically, the equation (2.12) implies that if a
snapshot of the line density in time is agree with
A(¢), then the time modulation of this line density
with (2.9) is equivalent to the expression of the
Fourier expansion on the variable ¢. In reality, the
signals are slightly different, but the approximation
is acceptable. Therefore the Fourier expansion on ¢
can be interpreted by the time modulation.

(2.12)

3. EVALUATING THE IMPEDANCE

The Fourier expansion on ¢ in (1.9) is a natural
transform of the line density to the spectrum, since
the line density is obtained from the particle density
in phase space as shown in (1.7). In Sacherer integral
equation, the line density induced voltage is calcu-
lated from this spectrum by considering the
corresponding environmental impedances. If the
conventional Fourier spectrum is used, then it is
straightforward to find the impedances at the
corresponding frequencies. Since the Fourier spec-
trum used in the Sacherer integral equation is
obtained on ¢, it is of interest to have a close look.

For the perturbation line density induced voltage,
using (2.10), we get

V,(r0)=~Iy 33 Alp)
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where Z{p,k) is the impedance at the frequency
pwo+kws. Not surprisingly, corresponding to the
spectrum A(p ), there is a satellite of frequency com-
ponents with the index of k from —oo to co. The
equation (1.11) can be rewritten as,
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Maultiplying by € /™% integrating over 6 from 0 to

27, and neglecting the mode coupling, we get,
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- jm+IZ(p,m+1)Jm+1(pr)) (3'3)

Note that the responsible impedances for the
coherent frequency shift at the azimuthal mode m
have two components, which are at the frequencies
pwgt(m—1)ws and pwet(m+1)ws, respectively,
due to the factor sind appeared in the linearization
of the Vlasov equation.

If we have a wideband impedance, then we may
write,

Z(p,m-1)= Z(p,m+1) = Z(p)
Therefore the equation (3.3) becomes,

(34)
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where the identity

2m
Jm«l(pr] + Jm+1(pr) = —I;T—Jm (Pr) (36)
is used. We note that the equation {3.5) is the same
as {1.12), it is however obtained by assuming a

wideband impedance.

For a narrowband impedance the equation (3.4) may
not be valid, therefore the equation (3.5) as well as
the original equation (1.12) carry some error. Note
that the equation (1.12) is obtained by taking the
impedance at the frequency pwg+muwg, which can
be written as Z(p,m), the concerned error is there-
fore obtained by comparing the following two terms,

Z(p,m=1)pn_i(pr) + Z(p,m+1)Jra(pr)

~ Z(p,m)( Jn-ilpr) + Jmslpr))
If the impedance is very nonlinear in the covered fre-
quency range, the error will no longer be negligible,

and a modification may be needed in estimating the
growth rate.

(3.7)
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