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Abstract 

In Sacherer integral equation, the beam line density 
is expanded on the phase deviation 4, generating a 
Hankel spectrum, rather than on the time, which 
generates a Fourier spectrum. This is a natural 
choice to deal with the particle evolution in phase 
space, it however causes complications whenever the 
impedance corresponding to the spectrum has to be 
evaluated. In this article, the line density expansion 
on (p is shown to be equivalent to a beam time 
modulation under an acceptable condition. Therefore 
for a Hankel spectrum, a number of sidebands, and 
the corresponding impedance as well, will be 
involved. For wideband resonators, it is shown that 
the original Sacherer solution is adequate. For nar- 
rowband resonators, the solution had been 
compromised, therefore a modification may be 
needed. 

1. SACHERER INTEGRAL EQUATION 

Consider the Vlasov equation, 

2t++$+$?$o (1.1) 

where $ (r$,+,t) is the normalized phase space den- 
sity, and 4 is the phase deviation of the particle. 
Taking the polar phase space co-ordinates (r ,6), 
which are related with the phase space co-ordinates 
(9,+lws) by, 

f#J = rcod (W 
$/ws = rsine (1.3) 

where ws is the incoherent synchrotron frequency, 
the phase space density can be writt,en as a large 
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stationary $~c and a small perturbation part $r, 
which oscillates with the coherent frequency WC, 

1/1 (r,O,t) = $,(r,e) + +p(f,B)ejWCt (1.4) 

The linearized Vlasov equation therefore is, 

+JP iwclc’p-ws --7gj-- = ~~vJc$) (1.5) 

where V is t,he total RF voltage, 4s is the synchro- 
nous phase, and VP(#) represents the voltage of per- 
turbation. Since the perturbation distribution satis- 
fying (1.5) must be periodic in 6 with period 2~, 
therefore it can be written as [1;2], 

$,(r$) = 5 R(“‘)(r)eim” 
Wlf=-CXJ 

(l-6) 

where R(““)(r) is th e radial function with the m’th 
azimuthal mode. The corresponding line density is 
defined as, 

X(4) = .j-zd~p (Mlws ) d +/us (1.7) 

To solve the equation (1.5), the line density is 
Fourier expanded on the variable # as [1,2], 

X(O) = -& E h(p)ejp6 
p-4 

(1.8) 

where the spectrum A(p) is 

A(p) = ]lX(#)e-jpd d# (1.9) 

Using (1.8), one obtains, 

V,(4) = - Jo 5 Z(p)4p)ejp4 (1.10) 
P==-cn 

where Is is the beam average current and Z(p) is 
the -impedance corresponding to the spectrum A(p). 
Substituting (1.6) and (1.10) into (1.5), we get, 
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i jfl (WC - 7n’ws)R(qr)e im’O j(t) = &JZF(w)ejwt dw (2.3) 

qw) = JIf(t)e-jwt dt (2.4) - wsro 
= ~ sin0 

Vcosds 
-f$- 5 Z(p)A(p)ejP4 (1.11) 

P’-=J 

Multiplying by e-jm ‘, and integrating over B from 
0 to 2k, we get, 

cwC _ mws)~(m)(r) = j~--~-!Tl2&%l 
VCOS$~ dr r 

x .p!i.l 

p--m P 
Jm (Pr)A(mb) (1.12) 

where the identities 

j(n-m)8de = zn 6,,, (1.13) 

and 

s2’ -j(m8-prc0s8)sinede---2~m .m 
Oe -y-3 Jm(pr) (1.14) 

have been used, and the mode couplin is neglected 
such that A(p) can be replaced by A ‘“l(p), which 8 

will be shown in the next section as a Hankel spec- 
trum of the corresponding radial function. 

The equation (1.12) is the Sacherer integral equation 
without taking into account of mode coupling and 
frequency spread. 

2. FOURIER EXPANSION ON 4 

The line density defined in (1.7) is in general com- 
plex, which is a result of the definition of the pertur- 
bation distribution in (1.6), where the inclusion of 
negat,ive m’ plus the arbitrary scaling of the radial 
function allows a complete description of the possi- 
ble solution of equation (1.5). If we define the line 
density of the m th azimuthal mode as 131, 

A(“‘)(#J) = $~~R(“‘)(r)ejmodtj/us (2.1) 

then the spectrum is 

h(m)(p) = JIh(m)(d)e-jpd d# 

= ,fomR(“‘)(r)Jm(pr)rdr (24 

We observe from equation (2.2 
I 

that the Fourier 
spectrum of the line density Xtm (4) with respect to 
the variable 4 is the m th order Hankel spectrum of 
the radial funct,ion R(“‘)(r) [2,3:. 

Conventionally, a Fourier transform is based on the 
time t as follows, 

where f (t) is considered a real function, and there- 
fore the spectrum F(w) is complex. Usually an 
impedance is defined in the same way with respect 
to the wake funct,ion on the time t. By examing the 
equation (l.lO), one observes that if a conventional 
impedance is used, then the use of Hankel spectrum 
in the same equation is inadequate. In other words, 
there are two ways to use (1.10). One way is to have 
the wake function, and the impedance as well, 
defined on the variable 4, and another way is to use 
the conventional impedance and to find an 
equivalent of the Hankel spectrum on the time t. 
We follow the second approach. 

Consider a general case where the time domain func- 
tion is f(t), the Fourier spectrum F(w) is shown in 
(2.4). If f(t) is modulated in time as, 

j,(t) = j(t + r/w0 coswst) (2.5) 

where r is the delay from the equilibrium beam pass- 
ing time, and wc is the beam revolution frequency, 
then the Fourier spectrum becomes, 

F,(w) = F(w)e jwd~o coswst 

= F(w) $fJ jk Jk(wr/wo)e jkwst (2.6) 
k-03 

Using (2.3), we get, 

j,(t) = $~~Fl(w)ejwt dw 

= ~~~~(w)k~~jk~k(wr/wo)ej(kws’w’t dw (2.7) 

Consider the line density represented by the Fourier 
expansion on the variable 4 in (1.8). The complete 
signal may be written as, 

x,(+,t) = -&- 2 A(p)ejP+ejwt (2.8) 
p==- 

The equivalent time domain signal can be found by 
considering, 

g5 = rcose = rcoswst 

Therefore using 

(2.9) 

ejPC = 2 jkJk(pr)e 
jkw,t 

(2.10) 
k=-w 

the equation (2.8) can be written as, 

X,(t)=&- (2.11) 
P=-m k=-ca 
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The equations (2.7) and (2.11) can be made identi- 
cal, provided we can assume, 

~(~1 = J-~f(t)e-jwr dt 

= h(p) = Jr_“,X(#)e-jP+ d4 (2.12) 

Physically, the equation (2.12) implies that if a 
snapshot of the line density in time is agree with 
X(4), then the time modulation of this line density 
with (2.9) is equivalent to the expression of the 
Fourier expansion on the variable 4. In reality, the 
signals are slightly different, but the approximation 
is acceptable. Therefore the Fourier expansion on 4 
can be interpreted by the time modulation. 

3. EVALUATING THE IMPEDANCE 

The Fourier expansion on 4 in (1.9) is a natural 
transform of the line density to the spectrum, since 
the line density is obtained from the particle density 
in phase space as shown in (1.7). In Sacherer integral 
equation, the line density induced voltage is calcu- 
lated from this spectrum by considering the 
corresponding environmental impedances. If the 
conventional Fourier spectrum is used, then it is 
straightforward to find the impedances at the 
corresponding frequencies. Since the Fourier spec- 
trum used in the Sacherer integral equation is 
obtained on (p, it is of interest to have a close look. 

For the perturbation line density induced voltage, 
using (2.10), we get 

v,w,t) = -IO .E A(P) 
p”-CO 

o(, 

x C jkZ(p,k)Jk(pr)ejkeejwt (3.1) 
k=- 

where Z(p,k) is the impedance at the frequency 
pwo+kws. Not surprisingly, corresponding to the 
spectrum A(p), there is a satellite of frequency com- 
ponents with the index of k from -co to co. The 
equation (1.11) can be rewritten as, 

j E (WC-m’Ws)R(m’)(r)ejm’e= * sin8 
In’ a---00 

(3.2) 

Multiplying by e -jm*, integrating over e from 0 to 
27r, and neglecting the mode coupling, we get, 

j(wc-mws)Rqr) = wslos1 
VCOS#J~ dr 2j 

x 5 ~~(“‘(P)(i”-‘z(p ,fn-l)J,-,(pr) 
p =---co 

- j”f’Z(p jm+lVm+~(~rN (34 

Note that the responsible impedances for the 
coherent frequency shift at the azimuthal mode m 
have two components, which are at the frequencies 
pwo+(m-1)~s and pwo+(m+l)ws, respectively, 
due to the factor sin0 appeared in the linearization 
of the Viasov equation. 

If we have a wideband impedance, then we may 
write, 

Z(p,m-1) = Z(p,m+l) = Z(p) (3.4) 

Therefore the equation (3.3) becomes, 

(WCMrn ws)Rq7) = wsIoL 
Vcosds dr 2 

x 5 A(m)(p)Z(p)(jm-lJ,-~(pr)-jm+l~,+~(Pr)) 
p---o0 

= .m-l mwsI0 dO0 1 
3 --- 

VCOS#S dr r p--oo 

where the identity 

J,-,(v) + Jm+l(v) = 2”Jmbr) (3.6) 
pr 

is used. We note that the equation (3.5) is the same 
as (1.12), it is however obtained by assuming a 
wideband impedance. 

For a narrowband impedance the equation (3.4) may 
not be valid, therefore the equation (3.5) as well as 
the original equation (1.12) carry some error. Note 
that the equation (1.12) is obtained by taking the 
impedance at the frequency p wo+m ws, which can 
be written as Z(p,m), the concerned error is there- 
fore obtained by comparing the following two terms, 

z(~,m---1)J,-dpr) + z(~,m+l)J,+dpr) 

- Z(p,m)( -L-dpr) + J,+dpr) 1 (3.7) 

If the impedance is very nonlinear in the covered fre- 
quency range, the error will no longer be negligible, 
and a modification may be needed in est,imating the 
growth rate. 
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