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Abstract 

Emittance dilution can be induced in linear colliders by 
the short range quadrupolar wakefields generated, even in 
perfectly aligned accelerating structures, by the charge dis- 
tribution of flat beams. We consider a linac with a con- 
stant phase-advance FODO lattice and we calculate, for 
different energy scaling laws of the beta functions along 
the linac, the single-bunch transverse emittance growths 
for a two-particle model where the bunch is represented 
by a head and a tail centered beam ellipse. We analyze 
the implication of this effect for the linar collider designs. 

1 INTRODUCTION 
2.1 The Z-particle model 

Preserving the beam transverse emittances from being de- 
graded along the linacs in order to reach the design lumi- 
nosity at the interaction point is a major challenge of the 
future linear collider design. Many years ago, quadrupole 
wakefields were recognized as a possible source of emit- 
tame dilution [l] along the linac. of the SLAC linear col- 
lider. Quadrupole wakefields are induced by the beating 
of the horizontal and vertical beta-functions which, even 
for rourrd beams, generates a non-zero t.ransverse charge 
quadrupole moment proportional to the beam averaged 
(z’) - (y’). They in turn create a quadrupole gradient 
focusing error along the beam, which modifies the designed 
beam transport optics of the linac. However, it was soon 
realized that dipole wakefields are the dominant sourc.e 
of emittance growth. This is essentially due to the facts 
that, first the dipole transverse wake potential grows more 
rapidly with respect to the transverse c.oordinates (that 
is linearly rather than quadratically for the quadrupole 
one) and, second the quadrupole moment of round beams 
rapidly averages to zero along the linac. 

We consider a bunch formed by 2 slices separated by AZ. 
The two slices have identical beam matrix CO at injection. 
While the first slice obeys the design focalisation along 
the linac, the second one is affected by the quadrupole 
gradient induced by the quadrupole wake of the first slice 
in the accelerating structures. Their beam matrices Cl 
and Cz therefore differ at the linac exit, although their 
emittances stay equal. Parametrizing a beam matrix as 

c=c ( fa --) 
with c = m the emittance, the total emittance of the 
bunch is given by 

In the next linear collider the obligation, related to 
beamstrahlung, to accelerate flat beams with a large hor- 
izontal to vertical emittance ratio reinforces the expected 
effect of quadrupole wakefields because the quadrupole 
moment, dominated by the horizontal average (z’), re- 
mains positive along the linac. Moreover, unlike the dipole 
one, the quadrupole wake of a centered beam accelerated 
along a perfectly aligned linac does not vanish. Since the 
single-bunch emittance growth is a collective effect propor- 
tional to N2, where N is the bunch population, depending 
in an essential way on the injection energy and on the focal- 
isation along the linac, it is important to know what is the 
maximum bunch charge which can be accelerated without 
degrading the transverse emittance for given injection en- 

where 6tr, 60 and 6y are the differences of the CX, ,9 and 
y parameters between the two slices. At the lowest order, 
the emittance growth is then given by 

SE - = +2 - Gpsy) 
c 

2.2 Transverse motion with focusing error 

The transverse motion of the first slice in the linac is gov- 
erned by the Hill equation with an acceleration term 

a:/’ + E’jE x’ + I/; x = 0 

where x represents either transverse coordinate, E’ is the 
energy gradient and If the focusing gradient along the 
linac. We assume that the tail slice feels a focusing gra- 
dient (iii due to the quadrupole wake from the head slice 

ergy and focalisation optics. This is the question we want 
to answer in this paper by calculating the single-bunch 
emittance growth induced by quadrupole wakefields in the 
framework of the “2 particle model” where the bunch is 
modeled by 2 beam ellipses representing the head and the 
tail of the bunch. We will consider a bunch injected on- 
axis in a perfectly aligned linac. We will assume FODO 
lattice with a constant phase-advance and a scaling of the 
FODO-lengths and beta-functions as E@, where E is the 
energy along the linac. 

2 CALCULATION OF THE 
EMITTANCE GROWTH 
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in the accelerating structures [I]. Denoting by R(s, s’) the 
transfer matrix from position s’ to s along the linac asso- 
ciated with the gradient I<, and by (R+ liR)(s, s’) the one 
associated with Ii + c%‘, one has 

6C = C2 - Cl = SQ Cl + Cl . 6QT 

to first order in 6R, with c~Q the following matrix 

SQ = bR(sl, s,,) . R-‘(q) s,,) , 

sQT its transpose, and so and s1 the beginning and end 
positions in the linac. The transfer rnatrix obeys the fol- 
lowing differential equation 

&R(s, 6’) = A(s) . R(s, s’) 

with the matrix A(s), deduced from Hill’s equation, given 
bY 

A(s) = -I&) -(E’jE)(s) 

The matrix SQ can be calculated by integrating the 
equation for the difference SR. Neglec.ting the difference 
6(E’/E) in the accelerating gradient between the slices 
which originates from the R.F-phase and the longit,udinnl 
wakefield, one gets at first order in 6K 

J ‘I 6Q = d.s R(q) s) .6A(s) . R(R, , s)-’ , 
30 

with 

&A(s) = 

The above expression of 6Q only involves the Rlz and R22 
matrix elements of R( ~1, s), which can be written as 

RIZ(~I > s> = J- & JZiZr;sin(Alli) 

R~~(sI, s) = @fi(cos(AJI) - 01 sin(A$)) 

where A+ is the phase advance from s to ~1. This leads 
to the following expression of the difference between t,he 
head and tail beam matrices 

6C = 61 J s1 ds 61{(s) P(s) JO ( ,,~“~,, CI, 5,” - cos ++z “1 tan -nT) > 
where the argument of the trigonometric functions is 2A.1/,. 
The emittance growth at the lowest order in the gradient 
error SK is then simply given by 

6c 1 IJ 
Jl -=- 

E 8 ds 61<(s) /T(s) exp (2iA?l,) ’ 
JO 

2.3 The q~~arlrupole w&e iadured focrhg error 

As first discussed in [I], t,he quadrupole wakefields created 
by the first slice and averaged over a long accelerating 
section induce a transverse Laplace force given by 

c(i? + v’ x ii) = N e2 q(Az) Q1 (x:; - y$) 

with N the bunch population, &I = (z”) - (y2) the trans- 
verse quadrupole moment of the head slice, 2 and d the 
unit vectors in the 1: and y directions, and w2 the av- 
erage quadrupolar wake potential [2] of the accelerating 
structure, assumed axisymmetric, per unit length and unit 
charge. As in [l], we assume that there is no source of 
zy-coupling in the linar and we neglect the effect of the 
skew-quadrupolar wakefields proportional to (cy). For flat 
beams, the large horizontal over vertical emittance ratio 
allows the following approximation 

QI(.s) = 4.~)4(,~) - cy(s)Py(s) 2: cz(s)Pz(s) 

Translated in the equation of motion, the above Laplace 
force gives rise to the following focusing gradient 

6K(.s) = -$$ w2(Az) c,(s),&(s) 

whic.h we parametrize as SK(s) = -A(s)/?,(s) for later 
convenience. Notice that the coefficient A(s) scales like 
the inverse of the energy squared along the linac. 

2.4 Errlittance Growth a.fter one FODO ceil 

The emitt.ance growth after one FODO cell can be easily 
c.alculatcd by assuming that, t,he energy is constant over 
the cell and that the beam is matched. In fact, we con- 
sider a cell with /J phase-advance starting by either half 
a focusing quadrupole F/2 or half a defocusing one D/Z. 
The horizontal and vertical emittance growths are then 
given by 

bY _ 2 A2L6 

E,,Y 
cx,Y 2 

where L is t,he dist*ance between two quadrupoles. The 
coefficients c, and cy depend on the phase advance and on 
the cell type. As shown in Table 1 for 60’ and 90’ phase 
advances, they are always of the order of one. 

Table 1: C:oeficients c,,~ for the single cell emittance 
growth. 

6L 
c, at F/2 cy at, I?/2 c, at, D/2 cy at D/2 

3.37 -1.73 4.63 -1.25 
9o” 0.727 -1.66 3.27 -1.00 

2.5 Emit thnce Growth over the linac 

To calculate the emittance growt,h over the linac, we as- 
sume that the phase advance per cell /I is constant along 
the linac while the length L scales as Lo(E/Eo)“, Eo be- 
ing the injec.tion energy and LO the distance between two 
quadrupoles in the first cell. To simplify the calculation, 
we also assume that the linear rise of the energy along the 
linac is slow compared to t,lie beta-wavelength 

E’/E < 1/2L 

The energy can then be approximated by a step func- 
tion such that it is constant and the beam is assumed to 
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Table 2: 500 GeV c.m. ener--’ “---- --‘I”-- ------+--- ,-A characteristic length L, for Eo = 5 GeV. rgy linear c”lL‘ucr pa‘nrr,cxc1J a.llU 
I CLIC I VLEPP 1 Nl I ---- I LC ] SBLC ( TESLA 

fnr lCHz1 30 14 1 11.4 1 3 1.3 

be matched in every cell. Since the beta functions scale 
like the length L, the gradient error UC then scales as 
61<c(E/Ec)a-2 where 61cs is the gradient error in the first 
cell. The integral over the linac entering in the expression 
of the emittance growth can then he replaced by a sum 
over the N FODO cells composing the linac, leading to 

The emittance growth over the linac. is therefore equal to 
the emittance growth after the first cell (6c/c)s times a 
correction factor as given by 

E = (F>, I$ e2inp ($)3*e2i2 . t 
For an infinite number of cells, the above alternating sum 
diverges when N > Z/3, oscillates when N = 2/3, and 
converges when cy < 2/3. This clearly shows the special 
role of the cy = 2/3 scaling, independently of the value of 
the phase advance /L. For finite N, the sum can be easily 
evaluated when /L is a submultiple of 2s. In particular, for 
90” phase advance, writing 

(&g)““-’ (St)““‘- (3a e2,?i&(33m-3 

and then replacing the sum over t,he cells back to an inte- 
gral over the linac, leads to 

s= 
2 u 

f',Y 
cxtY $ 

i( 

(+$.)3”-2-i)2 ifnf $ 

(1 - (-l)N>2 ifn=$ 

where El is the beam energy at the end of the linac. When 
El >> Eo, the emittance growth scales like (E~/Eo)“*-4 if 
(Y > 2/3, and is independent of El if (Y 5 213. From the 
above discussion on the N -+ 00 convergence, the critical 
exponent 2/3 does not depend on the value of the phase 
advance. In fac.t the emittance growth for FO’ phase ad- 
vance is given by the 90’ result divided by sin2(a/3). 

3 IMPLICATION FOR LINEAR 
COLLIDER DESIGNS 

To evaluate the magnitude of this effect for the linear col- 
lider designs, we introduce the characteristic length L, as 

L, = &‘I3 = N e2w2(Ar) c&so) 
EO 

The emittance growth induced by quadrupole wakefields 
then reads 

6f r,y- “iy (${ ((k)‘a-z-‘)2 ifafg 
fE,Y (1 - (-l)N)2 ifa:=; 

so that it is small only when LO << L,. The length L, 
is given in Table 2 for all linear colliders (except JLC for 
which the RF frequency is not yet known) assuming an 
injection energy E,J = 5 GeV. The wake potential zuz, eval- 
uated for AZ = 2aZ, has been calculated with TBCI [2] for 
TESLA and, for the other designs, derived from the wake 
function W = 4ncozoz given in [I] for the SLC 3 GHz cav- 
ities down to a distanc.e of 3 mm. For RF frequencies fn~ 
higher than 3 GHz, we used the following scaling formula 

W(fq2c7t) = x5 W(3”92 A 6,) 

with X = fn~/3GHz. 
As shown by Table 2, the emittance growth can be size- 

able for the designs with the highest RF frequency. This 
is even more true if the linac optics scales linearly with 
energy (o = 1) due to the correction factor (EI/&J)~. 

4 CONCLUSION 

IJsing a simple “2 slice model”, we have estimated at the 
lowest order in the wake potential the emittance growth 
induced by the transverse quadrupole wakefields for a flat 
hunch accelerated in a perfectly aligned linac. The emit- 
tance growth increases quadratically with the population 
and the horizontal emittance of the bunch. It depends also 
strongly on the injection energy Eo and the linac focali- 
sation optics. Assuming that the half beta-wavelength is 
given by LIJ(E/Eo)~ as a function of the energy E along 
the linac, the emittance growth is proportional to (Lo/L~)~ 
with a c.orrection factor (E~/Eo)~~-~ when ct > 2/3. The 
characteristic length L, sets a lower limit on the beta- 
wavelength close to 20 meters, and even below for (Y = I, 
for the highest RF-frequency linear collider designs. 
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