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Ahstra~ct 

The transverse dynamics of a mismatched charged-particle 
beam propagating through a continuous focusing channel 
is studied using the coupled set of Vlasov-Poisson equa- 
tions. A one dimensional model depending only on one 
parameter is derived. We present results about beam halo 
and the instability of the core triggered by halo particles. 

1 INTRODUCTION 

The development of high-current beams, for FEL or proton 
accelerators, demands an accurate description of the outer 
part of the tranversc distribution, often identified with a 
low-density halo surrounding a dense core[l]. The halo for- 
mation is related to the emittance growth in mismatched, 
space-charge dominated beams[2, 31, and is important for 
the evaluation of the beam losses in high-intensity accel- 

erators. 
In order to understand how such a halo can be created, 

a simple one-dimensional model was built. The beam is 
described by coupling the Vlasov equation in cylindrical 
coordinat,es to the self-force due to the electric and mag- 
netic fields created by the beam charge in a continuous 
focusing channel. The model depends on a single param- 
eter which measures the ratio between the focusing and 
the space-charge forces. A multiparticle code solves the 
system of equations for an initial laminar (zero emittance) 
gaussian distribution, whereas non-zero emittance initial 
dist,ribut.ions are invcst8igatetl using an Eulerian Vlasov-- 
Poisson. The stability of a uniform-density laminar distri- 
bution is investigatrd by a linear analysis of the influence 
of halo particles on the core radial plasma waves. It is 
shown that, when the beam is mismatched, these particles 
can have chaotic trajectories and generate a halo which in 
turn excites waves irregularly in the core of the beam. 

For an axisymmebrical beam in the paraxial approxima- 
tion, the beam dynamics is described by a radial distribll- 
tion following Vlasov equation: 

g + pg + F(s, r)g = 0, 

where F is the sum of a linear, uniform, external focusing 
force and self-field force, 

F(s) r) = --as + i J J ’ ds’ Q) dp’f(s’,p’, T) 
so -co 

(2) 

where cc 
J J 

co 
ds’ dp’f(s’,p’, r) = 1. (3) 

0 --z-z 

We introduced dimensionless variables, s = r/y”, p = 
r7fn{T and r = (‘fl/~o)z = &+/X,), where 

are the radial position and l,hF nonrelativis- 
tic radii velocity, respectively, z is the position along 
the accelerator, r. is the initial rms radius, c,f3 is the 
longitudinal component of the particle velocity, K = 
q1/2*~,m(c@y)~ = (25rr0/&)~/2 is the perveance, y = 
(l-/32)-‘/2, Ap = 2acp/ wp 
(I/momc&3r~)1/2 is th 

is the plasma wavelengt,h, wp = 
e relativistic plasma frequency 

and I is the rms current. Eqs. (1) and (2) depend on thtx 
matching parameter, a = 2(&/X,)’ = (Q/T,$~ j2/2! where 
Xp = 27rca(my/k)‘/2 is the betatron period corresponding 
to the external force -kr, and rn~ = (Xdi/27r)m is the 
rms matched radius. The advantage of int8roducing scaled 
variables is that the system depends only on the parameter 
a, equal to l/2 for a matched beam, and t,hat the acceler- 
ator length is measured in units nf the r&tivistic plasma 
wavelength. 

2 NUMERICAL SIMULATIONS 

We have developed a multiparticle code solving c:qs. (1) 
and (2) for N particles subject to the ext,ernal focusing and 
space-charge forces. We assumed an initially laminar (zero 
emittance) beam with a gaussian radial dcynsity truncat,ed 
at, three standard deviations. ‘rhp particlrss are loaded with 
a weight determined by the init,ial radial distribution and 
with zero velocity; in order t.o avoid spurious numerical 
collisions, we regularized the Coulomb interaction by giv- 
ing a small thickness to the particles. Thr accuracy of the 
integration was monitored by calculating the total energy, 
which is conserved with a precision better than ICI-~. As 
a typical result of the simulations, fig. 1 shows t,he phase 
space (s,p) at 7 = 100 for N = 1000 particles subject to a 
continuous focusing force with n = 1, 

Multiparticle simulations are not much practical for de- 
scribing initially nonlaminar distributions wit,h non-zero 
emittance, for the large number of particles required. In 
order to describe more realistic initial distributions, we 
have used a one-dimensional Eulerian code, solving eqs. (1) 
and (2) with a direct discretisation of the phase space[4]. 
Such codes allow a fine resolution of phase space struc- 
tures, even in regions of low density. However, they are 
not very suitable for initially singular distributions, like 
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Figure 1: Phase space distribution at r = 100 for an ini- 
tially mismatched beam with a I: 1. 

Figure 2: Distribution function at r = 20 for Q = 2 and 
up = 0.1. 

the laminar case. A comparision between the results of 
simulations with a narrow initial velocity distribution has 
shown good agreement, between the multiparticle and Eu- 
lerian codes. An example of output from the Eulerian code 
is shown on fig. 2, where the distribution function is drawn 
after T = 20, for a = 2 and an initially gaussian velocity 
distribution with up = 0.1. 

3 MISMATCHED 
UNIFORM-DENSITY BEAMS 

3.1 Exact time-dependent distribution 
It is well known that a laminar, uniform4ensit.y distri- 
bution generates a linear space-charge force, so that the 
emittance remains zero. This simple case can be stud- 
ied analytically, assuming the following initial distribution 
function 

fo(s,p, T = 0) = s6(p)H(fi - s), (4) 

where H and 6 are the step and Dirac ‘Lfunctions”. If so is 
t,he initial position (at T = 0) of one point of the beam, let- 

ting S(T) = sc~(r), its motion is described by the envelope 
equation, j: = --LIZ + 1/2x (where dots indicate derivatives 
with respect to r), with z(0) = 1 and i(O) = 0. x(r) is a 
periodic function and is constant for a matched beam, with 
a = l/2. This laminar solution is represented by the distri- 
bution function fe(s,p, r) = (s/r)a(zp- ks)H(fi- S/Z), 
where the r-dependence is contained in the function x(r). 

The uniform-density laminar distribution for a mis- 
matched beam oscillates in the phase space without distor- 
tion. For the further developments, it is useful to introduce 
a new set of variables, taking into account the oscillating 
motion of the envelope: letting B = s/x, jj = zp - 5s and 
T(s,& T) = f(s, p, r), eq. (1) becomes 

( 
P a ;+-- X(T)” 83 +d T=o, 6ji > (5) 

with 
T 

FL-;+; dsf 
J s 

* &rf(s’,p’, T), (6) 
0 --m 

and the laminar self-consistent solution is now time- 
independent: fo@,p) = RS(;li)H(& - 3). 

3.2 Plasma waves and halo particles coupling 

We whish now to test the stability of the above laminar 
solution. The Vlasov equation is linearized letting f = fo+ 
cfi (we omit the bars thereafter), where f. is the laminar 
solution and cfi << fe. The structure of the linearized 
Vlasov equation with a laminar beam imposes that the 
perturbation fr has the form: 

fl(%P,4 = p(s - Sj(~)MP -Pj(d) 

+ &)M(s, T) + S(p)N(s. T). (7) 

The first term describes the halo macro-particles, with 
phase space coordinates sj(r) and pj(r); the second and 
the third terms describe the perturbation inside the core, 
with N and M equal to zero for s > -\/2. Wangler and 
coworkers[l] have recently developed a similar model re- 
stricted to N = M = 0, i.e. neglecting retroaction of the 
halo on the core. It should be remarked that this assump- 
tion is not consistent with the full linearized theory. 

By a direct substitution of eq.(7) in the linearized Vlasov 
equation, considering a single macro-particle of coordi- 
nates (se, PO), one obtains the following equations for the 
halo particle motion: 

and a Mathieu equation for the perturbat,ion inside the 
core, s < fi, 

1 
ti + :zm = -io6’(s - so), (10) 
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Figure 3: Phase space trajectory for a halo particle moving 
in the field of an oscillating uniform-density core vzith a = 
1. 

where m = -M’, 7iz = N + 6(s - so). The primes and the 
dots indicate the derivatives with respect to radial position 
s and “time” 7, respectively. 

One ohserves that the halo particle generates plasma 
waves when it goes through the core and that its motion 
is independent on bhose waves. The halo particle has a 
complex mot,ion in the potential of the core and of the fo- 
cusing force; its effective mass is a periodic function of T. 
In order to study the domain in the phase space explorrtl 
by the halo particle, PoincarG maps were performed draw- 
ing one point each time X(T) = 1 and Z!(T) = 0. Figure 3 
shows a PoincarG map for a = 1. We observe two elliptic 
fixed points which correspond t.o a zone with no particle 
in phase space, as it can be seen from the result of the 
multiparticle code shown on fig.1. 

The moment with a given smoothing function y(s) of 
the Mathieu equation (IO) is considered, in order to study 
numerically the parametric build up of t,he plasma waves 
in the beam core. If we let ,U = s,” ds m(s,~)g(s), then 
eq. (10) leads to: 

fi + $f = sog’(sD). (11) 

We have chosen g(s) = (rfi-‘/“exp[-(s - ~~)~/2], 
where ~7 is small. The function g(s) allows to study the 
amplitude of the density perturbation N around a given 
point 51 in the core. E’igure 4 shows the evolution of N 
versus T for a = 1; when the source term in the Math- 

ieu equation is neglected, thr density shows a slow linear 
growth (fig.4a); remarkably, the system is precisely on the 
edge hctwern Liapunov stability and exponential instabil- 
ity; when coupled to a chaotic. halo particle, a very fast 
irregular growth of the density is observed (fig:lh). 

4 CONCLUSIONS 

The beam halo formation for a space-charge dominated 
beam in a continuous focusing channel has been investi- 
gated using a one-dimensional model. The extension of 
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Figure 4: Density N vs. r, as calculated from eq.(ll), for 
a = 1, s1 = 0.5 and c = 0.1; a): without the halo particle 
source; b): with the halo particle source. 

the halo observed in the simulations with laminar and non- 
laminar beams, coherently with other results[l, 21, seems 
to be not much larger than the initial conditions value. 

To obtain some physical understanding of the halo dy- 
namics behind the observation performed with the sim- 
ulations, we investigated the coupling between the halo 
and the core in a mismatched beam. The stability of the 
uniform-density solution has been tested with a simple lin- 
ear model consisting of a halo particle interacting with the 
plasma waves generated in the oscillating core. Without 
the halo particle, we found a marginal instability for the 
waves in the core, with a linear growth of the porturba- 
tion density. However, the interaction with t,he halo parti- 
cle crossing the core strongly and irregularly amplificas t,hc, 
plasma waves in the core. 

As a final remark, we note that the same results hold for 
a matched beam in a periodical focusing channel. whc,re 
the core oscillations are driven by the channel. 
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