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Abstract 

We present analytical and numerical methods of 
computation of the undulatoriwiggler radiation. the 
techniques we discuss include the effects of the e-beam 
energy spread, emittances and matching conditions. 
We also analyze the possibility of exploiting the 
undulatoriwiggler radiation as a diagnostic tool. 

1. INTRODUCTION 

Radiation emitted in magnetic undulators (U) or 
wiggler (W) is a versatile source and can be exploited 
in many different ways. Whatever application one has 
in mind, it is always necessary to know in a detailed 
way the characteristics of the U/W spectrum. Devia- 
tions from the ideal shape may be due to a number of 
reasons. Several computational schemes have been 
proposed [1,2]. The use of generalized Bessel functions, 
of two or more variables, allows the analytical 
computation of the brightness of exhotic forms of 
undulators [3]. Even though the brightness expansion 
in terms of generalized Bessel functions yields results 
hardly achievable using classical means, the inclusion 
of all the contributions providing the W/U spectrum 
modifications cannot be easily accomplished within an 
analytical framework, 

In this contribution we compare analytical and 
numerical results. The analysis we develop refers to 
the brightness of linearly polarized U/W and includes: 
the dependence of the magnetic field on the transverse 
coordinates, the electron betatron motion, the e-beam 
emittances and the energy spread. 

2. ANALYTICAL TREATMENT 

It is rather difficult to perform an accurate 
analytical computation accounting for all the bright- 
ness distortion effects. A reasonably accurate compu- 
tation should include: a) the magnetic field de- 
pendence on the transverse coordinates, bl the trans- 
verse e-beam phase-space distribution and the re- 
levant optical functions, cl the e-beam relative energy 
distribution, 

In Refs 2 an expression providing the U/W 
brightness including a-c) effects, has been obtained. 
We do not quote the explicit results, but comment on 
the general consequences of the analysis. 

The on axis spectrum profile for the ideal case is 
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where n is the order of the harmonic, N, k and A, the 
number of undulator periods, the parameter strength 
and period length respectively, finally y denotes the 
electron relativistic factor. When the non ideal 
features are included and the e-beam is assumed to 
have the following phase-space and relative energy 
distribution 
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with Wd,aq,y,J being the Twiss parameters and c CJ 
the e-beam emittance and energy spread, 
modifies as follows 
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The above expression yields an idea of the U/W 
brightness spectrum distorsion, due to the p-para- 
meters. 

Equation t.3) is rather accurate for the first 
harmonics. The accuracy decreases with increasing n 
and when the matchin fif conditions deviate from 
perfect matching (aq = 0, fi rt = l/y, = l!.C!J. 
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An e-beam with emittance radiates even on axis 
harmonics, the relevant analytical treatment is 
affected by rather crude approximations a numerical 
procedure seems therefore more appropriate. 

3. NUMERICAL ANALYSIS OFTHE LINEARLY 
POLARIZED U/W 

The numerical calculation is performed by means 
of a Monte Carlo sampling of the mean electron radia- 
tion in function of the frequency. The initial energy of 
the electrons is obtained from the normal distribution 
having oE =Ayly.y,, with y. being the mean energy. 
The initial values of the position and velocity (xo,xIo, 
y,,, y’,$ of each electron history are obtained from the 
density distribution flq,q’) (see Eq. (211, using a multi- 
dimensional rejection procedure. The solid angle 
integration is sampled uniformly over a sphere 
surface. For each electron we solve numerically the 
system of ordinary differential equations 
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where Q = x,y,z, s = ct, kU= 2nf& an n is the direction of 
observation. The quantity A(x,y) accounts for the 
transverse coordinate dependence of U/w field and 
reads 
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and for the equal focussing case 6=1. The initial 
values of (5) are 
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and the solution is found in the interval [O,NJJ using 
the subroutine RKF45 [43. The brightness derived 
from the electron history is calculated using the 
Lienard-Wiechert formula 151 

(8) 
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The brightness of the first and third on axis har- 
monic, calculated with the above quoted procedure, is 
shown in Figs 1,2 containing also a comparison with 
the analytical approximations. 
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Figure 1. First harmonic brightness vs frequency 
parameters. a) analytical approximation, b) Numeri- 
cal analysis, a = a = 0, &= fi = fl*, c) analytical 
approximation, ‘d) kumerical ‘analysis a = a = 1, 
p, = p, = r/10. E=7GeV, A =5cm, k=‘i.48, 
F~= 7~10~ cm.rad, e,, =8.10-* cmara I! , 
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Figure 2. Third harmonic brightness vs frequency 
parameters of Fig. 1. a) analytical approximation, 
b) numerical analysis, ax = a,, =0.5, J3, = 0, = p*/5, 
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In Fig. 3 we show the on axis second harmonic 
brightness for a matched and non matched case. 

Regarding the first two figures it is evident that 
the reliability of the analytical approximation de- 
creases with increasing order of the harmonics and 
when the matching conditions deviate from the perfect 
matching. 
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Figure 3. Second harmonic on axis brightness k= 1, 
E=7 GeV, N=34, .I,=5 cm, ~x=7.10-~ cmrad, 
ey = 8*10s cmrad. 
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Figure 4. a) Solid angle integration cone. b) Bright- 
ness integrated over the solid angle vs frequency opti- 
mum matching conditions. k = 1, E =7 GeV, N= 34, 
AU = 5cm, cx = 7+10‘7 cmrad, cy =810-s cmrad, uC= 1C3 
integration intervals @E(0,2n), BC!O,ky). 
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Figure 5. Energy vs emittance for a single macroelec- 
tron with distribution (2) vertical and radial 
amittances have been assumed to be identical. 
Optimum matching conditions k= l,N=20, &=5cm, 
oE= IOe3~ a) E =56 MeV, integration interval AC& 
(1.12,1.29) ~10~~ Hz, +C(O, 2n), ‘3’(0,5~10-4); b) E=28 
MeV, integration interval, AWE (2.78,3.24) ~10~~ HZ, 
cp~(o,2n~,e~~0,5~10‘4~ 

In Fig. 4 we show the solid angle integration and 
it is evident that in this case the spectrum does not 
contain any information on the e-beam distribution. In 
Fig. 5 we show the energy vs emittance radiated by a 
low energy beam in a frequency interval around the 
second on axis harmonic and over a solid angle having 
c$ and 0 ranging from [O, 2n] and [0,5x 10-4<Myl 
respectively. The radiated energy increases with 
emittance almost linearly and this fact is a precise 
indication that the undulator radiation can be 
quantitatively exploited for diagnostic tools. 
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