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Abstract 
The paptrdescribes an algorithm for computation of eddy 
currents an accelerator vacuum chamber during a fast 
magnetic field variation cycle inside a kicker magnet,. The 
approach is based on boundary integral equations method. 
Computer code BKICK is presented in which this algo- 
rithm is implemented. The program can calculate eddy- 
current catribution, screening of the external magnetic 
field, and heat rate ineide the chamber walls. It is possible 
to define an arbitrary shape of the chamber and a compli- 
cated time dependence of the external magnetic fidld via 
the input data file. Efficiency of the computational algo- 
rithm all vs one to perform calculations on a small per- 
sonal computer like IBM PC/AT. As an example of prac- 
tical application of the program, the paper contains com- 
putational results for kicker magnet of the SSC Medium 
Energy Booster beam abort system. 

1 INTRODUCTION 
Eddy currents in vacuum chamber walls can produce no- 
ticeable screening of magnetic field and result in heating 
of a chamber. This effects are most valuable inside kicker 
magnets here abrupt jumps of magnetic fields occur. Ex- 
perimental investigations of eddy currents are costly and 
time consuming. Therefore, numerical simulations are use- 
ful for that purposes. 

In this paper boundary integral equation method is usrd 
to solve transient eddy currents problem. The approach 
involves discretization of the chamber walls only. This pro- 
vides a good computational effectiveness and simplicity of 
usage. The paper describes the algorithm formulation, its 
program implementation and an example of application. 

2 PROBLEM FORMULATION AND 
SOLUTION ALGORITHM 

Consider piece of vacuum chamber inside a magnet. Let 
UB suppose that it is a thin metallic cylindrical tube par- 
allel to z direction. The magnet imposes time-dependent 
field B*(t). This alternate field drives eddy current-s in the 
chamber wails. The typical structure of such currents is 
shown in Fig. 1. 

These eddy currents disturb field inside the magnet by 
a value SB. In the most part of the chamber the currents 
are parallel to z-direction, and resulting ma.gnetic field lies 
entirely in the XY plane. This allows us to consider the 
problem as homogeneous one in z-direction by disregarding 
relatively small regions near ends of the ma.gnvt. Thus, 
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Figure 1: Structure of eddy rurrcrnts in chamhrr wn.lls 

the problem ca.n be solved in a.n arbit,rary cross-sec6ion at 
i --const,. 

Let us divide bounda.ry of the chamber with N small 
segment.s like the ones shown in Fig. 2. 

Equa.tion of electromagnetic induction fpr cc~nI,n~~r l-I’- 
2’-2 reads: 

f 
Ed8 =. -. !I !?, !I, . c clt 

On using relat,ion j :I aE inside walls with cnndurtivitc 
cr, 1.h.s. of this equation ca,n be rFwritt,en as 

/Eda:=/Ldsz i(j, --j,). 

Magnetic flux through the cont,our is 

0 = 1. L 4 n s (B. + dB) Ci 
where L is length of the contour, 1 is its width and n is 
vector of unit normal. Here we use an approximate as- 
sumption that magnetic field is consta.nt within a. segment. 

Additional field 6B produced by eddy currents can be 

expressed as 6B -- curlA where vector potrntial has onlv 
z-component, A -.. (0: 0, A), and satisfies the following 
qua.t,ion 

-aA = P?j. 

c 

Fnr it central point of thr segment valur of A can br 
found by Green’s formula 

3Td 
A(r,) = -- c- J qrot r)j(r)dr 5 
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and the load vector being 

gure 2: Discretization of chamber walls 

where d is the wall’s thickness and the integral is computed 
over chamber boundary cross-section. G(ro,r) is Green’s 
function which for 21) Laplace operator is 

G(ro, r) = ~lnlro - rl. 

On applying curl operator to (4) one gets 

ndB(q,)=-y 
J 

F(r0, r)j(r)dr 
s 

where 

(5) 

F(ro,r) = nze - 7t 
x - x0 

--. 
’ lro - rja 

On substituting (5) into (3) and (2),(3) into (l), on? ob- 
tains 

2uld j2 -j, = -___ J c2 s 
F(ro,r)d$dr+ E(n.%). (6) 

C 

Let us associate current density value jk(t) with each Ic-th 
node of subdivision, and take a linear approximation to 
current variation inside eac.h segment. Then the integral 
in r.h.s. of equation (6) can be approximated as a linear 
combination of nodal values jk(t). Formulation of such 
relations for all segments of the chamber boundary yields 
a linear algebraic system of equations 

jitl - ji = C Hi&h(t) + R;, i T: 1 7 "') N, 
k 

with thematrix H being 

Hi, = -?$!! (J F(ro,r)l!r_‘*t’idr + S,. rk rktll 

+ J Ir - 11-11 
F(rol r)G--idr 

Sk-1 

d&(n) R;= :+ se-& 

Hue PO = (ri+r,+1)/2 is a. central point of the i-t11 bountl- 
ary segment; .?I,) Sk el are segments adjacent to node k; 1, 
is a length of the i-th segment. 

Integrals in (8) contain weak singula.rity at k = i, i - 1. 
These singularities ca.n be integra.ted by technique de- 
scribed in [I]. 

System (7) rewritten in a matrix form reads 

KJ i- IIj $ R = 0. (9) 

To solve it, we discretize the time interval under study with 
small enough step At, and apply Crank-Nicholson scheme 
(refer to 121): 

[iK+ ~JJ~+~+[~K- ;]J~+ in,+,+ $R- -0. 

(10) 
This itera.tive algorithm yields vect,or J at moment In,+, 
on each step by using the values at previous instant t,. 
The initial vector is Jo 7 0. 

As a result, we ha.ve an approximation to the current 
density distribution in the whole time interval. This ap- 
proximation can be used to obtain magnetic field induced 
by eddy current. at any point a.nd at any time moment with 
formula (5). We ca.n a.lso compute energy deliverrd by the 
eddy current a.s 

[: = E JJ j2(r,f)‘l’S 1+1, 
u 

and estimate average temperature rise in the walls 

AT :-. --‘-- 
I,dCFJ, pw 

where Lb is the boundary perimeter! c, is specific brat 
and pu- is densit,y of the wall material. 

3 ALGORITHM IMPLEMENTATION 
AND APPLICATION EXAMPLE 

Algorithm described above is implemented in the !%I<- 
TRAN code RKICK. The program calculates eddy-current 
dist,ribution, magnetic field and hea.t ra.tr in a chamber 
wall. It allows to define an a.rbitrary sha.pe of a chamber 
cross-section and a. complica.ted time dependcnre of thr 

external magnetic field via the input data file. 
As an exa.mple of the practica.1 a.pplication of the pro- 

gram, computations are performed for a model of the abclrt, 
magnet of hledium Energy Rooster at, Superconducting 
Super Collider which employs the ceramic cha.mbPr wit,h 

titanium coa.ting. It, has a.n aperture of 97.5mmx46.7mrn. 
Thickness of the coating is a.bout lpm. Magnetic field rises 
up t.o the va.lue of a.bout 0.065T daring 1~s. 

The chamber wall is discretized with 30 segments. 
Whole time 2~s is subdivided into 60 steps. Cotnputa.tions 
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Figure 3 Magnetic field variation inside kicker rna.gnet. 

consume 30 s on an IBM PC/AT computer. Maximum of 
the current density is 0.8x 10”A/crn2. Resulting magnetic 
firld in the center of the chamber is presented in Fig. 3. 
Dashed line corresponds to the field without. eddy currents 
while the solid one - to the computed field in the presence 
of eddy currents inside the cha.mber walls. Energy delivery 
is about 2.6 J per meter of the chamber length. Average 
temperature rise is AT%:GK. 
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