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Abstract

The paper describes an algorithm for computation of eddy
currents  an accelerator vacuum chamber during a fast
magnetic field variation cycle inside a kicker magnet. The
approach is based on boundary integral equations method.
Computer code BKICK 1is presented in which this algo-
rithm is implemented. The program can calculate eddy-
current coribution, screening of the external magnetic
field, and neat rate inside the chamber walls. It is possible
to define an arbitrary shape of the chamber and a compli-
cated time dependence of the external magnetic field via
the input data file. Efficiency of the computational algo-
rithm all vs one to perform calculations on a small per-
sonal computer like IBM PC/AT. As an example of prac-
tical application of the program, the paper contains com-
putational results for kicker magnet of the SSC Medium
Energy Booster beam abort system.

1 INTRODUCTION

Eddy currents in vacuum chamber walls can produce no-
ticeable screening of magnetic field and result in heating
of a chamber. This effects are most valuable inside kicker
magnets here abrupt jumps of magnetic fields occur. Ex-
perimental investigations of eddy currents are costly and
time consuming. Therefore, numerical simulations are use-
ful for that purposes.

In this paper boundary integral equation method is used
to solve transient eddy currents problem. The approach
involves discretization of the chamber walls only. This pro-
vides a good computational effectiveness and simplicity of
usage. The paper describes the algorithm formulation, its
program implementation and an example of application.

2 PROBLEM FORMULATION AND
SOLUTION ALGORITHM

Consider piece of vacuum chamber inside a magnet. Let
us suppose that it is a thin metallic cylindrical tube par-
allel to z direction. The magnet imposes time-dependent
field Bo(t). This alternate field drives eddy currents in the
chamber walls. The typical structure of such currents is
shown in Fig. 1.

These eddy currents disturb field inside the magnet by
a value 6B. In the most part of the chamber the currents
are parallel to z-direction, and resulting magnetic field lies
entirely in the XY plane. This allows us to consider the
problem as homogeneous one in z-direction by disregarding
relatively small regions near ends of the magnet. Thus,

e

Figure 1: Structure of eddy currents in chamber walls.

the problem can be solved in an arbitrary cross-section at
z —const.

Let us divide boundary of the chamber with N small
segments like the ones shown in Fig. 2.

Equation of electromagnetic induction for contour f-1°-

2'-2 reads: | do
Fds = — v | (1
f s c dt )

On using relation j == ¢ E inside walls with conductivity
o, Lh.s. of this equation can be rewritten as

L
fEds = f Lds ~ Z(j, - 1) (2)
o o

Magnetic flux through the contour is
$=10.L.n (By+6B) {3}

where L is length of the contour, 1 is its width and n is
vector of unit normal. Here we use an approximate as-
sumption that magnetic field is constant within a segment.

Additional field éB produced by eddy currents can be
expressed as 6B = curlA where vector potential has only
z-component A = (0,0, 4), and satisfies the following

equation
ar

~AA = -]
c
For a central point of the segment value of A can be
found by Green’s formula

41
A(rg) = — —14 / G{rg, r)j(r)dr (4)
s

o4
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gure 2: Discretization of chamber walls.

where d is the wall’s thickness and the integral is computed
over chamber boundary cross-section. G(ro,r) is Greeun’s
function which for 2D Laplace operator is

G(ro,r) = ~2-1—7;ln|r0 ~r|.

On applying curl operator to (4) one gets

2d .
n-éB(rg) = ~—c——f F(ro,r)j(r)dr (5)
s
where
Y- Y% T —To
Fleom) = e o o~ ey e

On substituting (5) into {3) and (2),(3) into (1), one ob-
tains

2cid

dB
J2=j1=——5" °
C

Bo). (5)

Let us associate current density value j;(¢) with each k-th
node of subdivision, and take a linear approximation to
current variation inside each segment. Then the integral
in r.h.s. of equation (6) can be approximated as a linear
combination of nodal values ji(t). Formulation of such
relations for all segments of the chamber boundary vields
a linear algebraic system of equations

ZHd]k

with the matrix H being
20dl; It~ reyql
- F(ro, ~dr
c? (/ (ro )lr el

r —re_s|
+~/-;.._1F(ro,r)W dr) (8)

F( To,T )djd(t )dr+ fJ-?l—(n

jH—l—]i +Rn = 1v“-»N1 (7)

Hi =

[tk — T4l

and the load vector being

dBo(l‘o)
e\ dt )

Here ro = (r;+r;11)/2is a central point of the i-Lh bound-
ary segment; Sy, Sk 1 are segments adjacent to node k; [;
is a length of the i-th segment.

Integrals in (8) contain weak singularity at k = i,i— 1.
These singularities can be integrated by technique de-
scribed in {1].

System (7) rewritten in a matrix form reads

KJ+HI{R=0. (9)

To solve it, we discretize the time interval under study with
small enough step At, and apply Crank-Nicholson scheme
(refer to [2]):

H

At 21’ ;

At n + - l.‘on+1 + = Rn = 0.

(10)
This iterative algorithm yields vector J at moment ¢, .,
on each step by using the values at previous instant ¢,.
The initial vector is Jo = 0.

As a result, we have an approximation to the current
density distribution in the whole time interval. This ap-
proximation can be used to obtain magnetic field induced
by eddy current at any point and at any time moment with
formula (5). We can also compute energy delivered by the
eddy current as

U - {/—%//]2(1'
o

and estimate average temperature rise in the walls

[t Eoeans b

,1)dS dt,

U
AT = oo
LdLwa Pw

where Ly is the boundary perimeter, ¢, is specific heat

and p,, is density of the wall material.

3 ALGORITHM IMPLEMENTATION
AND APPLICATION EXAMPLE

Algorithm described above is implemented in the FOR-
TRAN code BKICK. The program calculates eddy-current
distribution, magnetic field and heat rate in a chamber
wall. 1t allows to define an arbitrary shape of a chamber
cross-section and a complicated time dependence of the
external magnetic field via the input data file.

As an example of the practical application of the pro-
gram, computations are performed for a model of the abort
magnet of Medium Energy Booster at Superconducting
Super Collider which employs the ceramic chamber with
titanium coating. It has an aperture of 97.5mmx46.7mm.
Thickness of the coating is about 1um. Magnetic field rises
up to the value of about 0.065T during 1us.

The chamber wall is discretized with 30 segments.
Whole time 2us is subdivided into 60 steps. Computations
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Figure 3 Magnetic field variation inside kicker magnet.

consume 30 s on an IBM PC/AT computer. Maximum of
the current density is 0.8x 10%A/cim?. Resulting magnetic
field in the center of the chamber is presented in Fig. 3.
Dashed line corresponds to the field without eddy currents
while the solid one — to the computed field in the presence
of eddy cucrents inside the chamber walls. Energy delivery
is about 2.6 J per meter of the chamber length. Average
temperature rise is AT~86K.
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