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Abstract

Trapped modes are studied in a-waveguide with many
small discontinuities, which is a good model for the vac-
uum chamber of large accelerators. Frequencies of trapped
modes and their resonance contributions to the coupling
impedance are calculated.

1 INTRODUCTION

It has been demonstrated recently [1] that a single small
discontinuity (such as an enlargement or a hole) on a
smooth waveguide results in the appearance of trapped
electromagnetic modes with frequencies slightly below the
waveguide cutoff frequencies, and that narrow resonances
of the coupling impedance near the cutoff can be at-
tributed to these trapped modes. This phenomenon could
be dangerous for beam stability in large superconducting
proton colliders like LHC, where the design anticipates a
thermal screen (liner), with many small pumping holes,
inside the beam pipe {2]. In such structures with many
small discontinuities and high wall conductivity due to
inner copper coating, the trapped modes can contribute
significantly to the coupling impedances.

2 A SINGLE DISCONTINUITY

We list some results from [1]. In a cylindrical waveguide
with perfectly conducting walls having a small axisymmet-
ric enlargement at z = 0, with characteristic dimension
much smaller than the pipe radius &, there is a solution
of the Maxwell equations with frequency €. slightly below
the cutoff frequency wy = pr1e/b (g, is the mth root of the
Bessel function Jg). Far from the discontinuity (in fact, for
|z] > b) the flelds of the TM trapped mode are

ED = (11 /8)2To (prr/5) exp(~kal2]) (1)

and &(.1),7121) with corresponding radial behavior. The
“propagation” constant k1 = \/w? — Q% /cis
ky = piA/e® (2)

where A is the area of the cross section of the enlargement
in the rz-plane. Note that A4 enters Eq. (2) with its sign;
¢.g., for aniris that protrudes into the pipe, A would have a
negative sign, and solution {1) would not exist. We assume
from the beginning that kib < 1. So, the trapped mode
is spread along the axis of the pipe over the long distance
I = kl‘1 > b. From (2) frequency shift Aw; = wy — 0 is

Awr = wipd(A/6)2/2 . (3)

For the case of a finite, though large, conductivity of the
walls, the trapped mode exists only if damping rate 71 1s
smaller than Aw, i.e. when v; = w18/(2b) < Aw;, where
5= \/27(_/1000.)1) is the skin depth in the pipe wall.

This trapped mode produces a narrow resonance of the
longitudinal coupling impedance with the peak value

4Zou1A3
= e 4
TN ®

It was shown that a small hole in the pipe wall also
creates localized axisymmetric trapped modes. Results for
an enlargement remain valid for the hole if we substitute
A — ag/(4nb), where g is the magnetic susceptibility
of the hole, in Eqs. (2)-(4). A similar study has been
performed for higher-order and TE waveguide modes, and
the existence of trapped modes was also demonstrated [1].

3 MANY DISCONTINUITIES

Consider an axisymmetric waveguide with N small en-
largements located at z; and having areas 4; of the lon-
gitudinal cross section, 1 = 1,2,..., N. In this structure,
we look for a solution of the Maxwell equations with fre-
quency © below the cutoff w; in the piece-wise form (the
radial behavior is given by Eq. (1)): a;e®* for z < 2z,
an+le’” + bpe ™ for 2z, < 2 < Znt1, and bye F% for
2> zy, where B = /w? — Q2/c > 0, and a;, b;, are ampli-
tudes to be determined. We assume kb < 1 and enlarge-
ments are separated by distances larger than the chamber
diameter, so that one can neglect higher modes.

To find the eigenfrequency of the trapped mode we use
continuity conditions and the Lorentz reciprocity theorem,
e.g. [3]. It gives 2N simultaneous homogeneous equations
for 2N 4-1 variables (a;, b; and &). The condition for the so-
lutions for a;, b; to exist, i.e. the determinant of the matrix
in the LHS to vanish, gives an equation for &, which can
be written recurrently for any N. In notations y; = d;/z
with d; = p?A;/b® < 1 and z = kb, Eq. (2) for N = 1
becomes 1 —y = 0. For N =2

Dia(k) = (1~ y)(1 —y2) —e 202y = 0, (5)

where g; 1 = 2¢ — z;, (k > 1), is a longitudinal distance
between i-th and k-th discontinuities. Similarly, for N = 3

Dyatk) = Dia(k)Dya(k) — e ™2 905y,55 = 0. (6)
By induction, for N > 3 discontinuities
Dy n(k) = Dy yoalk) Doy w(k) — (7)

N-2, —2kgm, N —2k T
Zm:? j)hm(k")e rm.N YnlYNn — € g"”?!l!/N =0.
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Figure 1: Ratio k/k; versus g/l; for symmetric and anti-
symmetric (dashed) modes. Thick points show numerical
results.

3.1 N=2

Let us introduce new variables: p = A4,/4; > 1,
d = plA/b% v = 2/d = k/ky, and r = gd/b = g/l
cf. Eq. (2). Then Eq. (5) takes the form

(u—=1)(u—p) — pexp(~2ur) =0 . (8)

There are two positive solutions: u,, which exists for any
r > 0, and decreases asymptotically from p + 1 at small
r to p when r > 1/p; and u,, which exists only for
r > (p+ 1)/(2p), and increases from 0 to 1 with r in-
crease. The asymptotic values p and 1 correspond to the
two independent trapped modes for the two far separated
discontinuities, see Eq. (2). For two identical discontinu-
ities, p = 1, the factorized equation is

[u—1—exp(—ur)]{u—1+exp(—ur)] =0, (9)

and both its solution tends to 1 at large r, see Fig. 1.
Solution u, gives symmetric fields, and u, antisymmetric
ones, i.e. fields are zero in the midpoint between the two
identical enlargements, Fig. 2. The behavior of u, at small
r is easy to explain: two close enlargements work like a
single one with area A = A; + A>. It corresponds to
us — p+ 1, when » — 0.

We have calculated numerically the lowest eigenfrequen-
cies in a long cylindrical resonator with two small pill-
boxes using the code sUPERFISH [5]. To exclude the in-
fluence of the side walls, one has to choose length L of
the resonator to be large, L > I} = b3/(pu?A4). We used
b=2cm, 4 = A3 = 0.18 em?, ¢ =1-20 ¢m and L from
40 crn to 100 em. Fig. 1 shows that numerical and analyt-
ical results are in good agreement,.

The resonant contributions of trapped modes to the cou-
pling impedance can be calculated as for a cavity with
known eigenmodes, e.g. [4]:

au(l+ p) + 2p [exp(—ur) cos(p1g/b) — 1]
u(l+ p) + 2p[exp(—2ur)(1 + ur) — 1] (’

Ry = Ru
10)

where Ry 1s the impedance for a single enlargement with
area Ap, cf. Eq. (4), and u = u(r,p) is a solution of
Eq. (8). For small 7 the ratio Ry/ R, tends to {1 4 p)® for

g=120m {«5600.239 MHz

.

g=12Zom  1a5722191MHz

Figure 2: Electric field lines for symmetric (top) and anti-
symmetric (bottom) trapped modes.

the “symmetric” solution u,. For large distances, Ry/R;
becomes p® for u, and 1 for u,. There are some oscilla-
tions at intermediate distances. For two identical discon-
tinuities, p = 1, ratio Ry/R; at large distances becomes
(L cos(p1g/b)). While the sum of the impedances is just
twice the impedance of a single enlargement, there are
strong oscillations for each of two modes.

3.2 N=3

We condsider only the case of three identical equidistant
discontinuities, i.e. di = d, 1 = 1,2,3 and ¢; » = g23=g.
Equation (6) transforms into

(I=g)(u—-T+e ) [(u—1)" = (u+1)e” 2] = 0. (11)
The second brackets give an antisymmetric mode for two
enlargements separated by 2g, cf. Eq. (9). The square
brackets give two symmetric trapped modes: wu,p corre-
sponds to fields without nodes, exists for all » > 0, and
tends to 3 at small r; and wu,;, which exists only when
r > 3/2 and has fields with 2 nodes. All three solution
goes to 1 at large distances between discontinuities.
The impedance for the symmetric modes is

(e (u—1)+e ¥ +2u cos(ulg/b))2
Su+1—e 2 4 dur(u—1)

R:j = Rlu (]2)
At small distances, R/ R goes to 3% = 27 for u,p. At large
r it oscillates as (1 \/icos(ulg/b))z/Q for u.p, usy, see
Fig. 3. In spite of the oscillations for each of the trapped
modes, the sum of the impedances becomes just triple of
that for a single discontinuity at large spacings in which
case all three modes have the same frequency, Eq. (3).

3.3 Many Identical Discontinuities

In the case of NV identical equidistant enlargements equa-
tion (7) can be factorized in the form

(1= N2 Pa(y)Pn(y) = 0, (13)

where n = m = N/2 foreven N andn=m+ 1= (N +
1)/2 for odd N, and P;(y) are polynomials in y of the
power j except exponential dependence on u = 1/y in their
coefficients, of. Eqgs. (9) and (11). Equation P,(y) = 0
has up to n positive solutions corresponding to symmetric
trapped modes. The actual number of the roots depends
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Figure 3: Ratio R/ R, versus g/l;: sq solid, a dashed, and
s1 dash-dotted line.

on the distance ¢ between discontinuities. For any g there
is at least one solution, and it behaves like y o~ 1/N at
small distances, i.e. k > Nk, because P,(y) — 1~ Ny
when g/l; — 0. This solution corresponds to the maximal
symmetric trapped mode, without nodes. It always has the
largest frequency shift, i.e. the lowest frequency between
all the trapped modes, and the impedance N3 times that
for a single discontinuity, Eq. (4), when g/l; — 0.

Equation Pp,(y) = 0 gives up to m solutions correspond-
ing to antisymmetric trapped modes. At large distances,
when g/{; > 1, the asymptotics of P;(y), j = n,m, are
(1 - y)/, and there are N = n + m solutions of Eq. (13)
which asymptotically tend to 1.

4 PERIODIC STRUCTURES

4.1 One Discontinuity per Period

Consider now periodic arrays of discontinuities. We as-
sume that the period of the structure D is longer than the
waveguide diameter, D > 2b, and look for a periodic (with
the same period D) solution of the Maxwell equations with
frequency 2 below the waveguide cutoff, Q@ < w;. Apply-
ing the reciprocity theorem and continuity conditions leads
to a simple equation for &:

W= (L4 e ) /(1 - o) (14)
where v = 1/y = k/ky and p = dD/b = D/l;. This
equation has only one positive solution u = u(p) > 1 for
any positive value of p. It tends to 1 for p >» 1, but its
asymptotics at p < 1 is u{p) ~ \/% = /2l1/D, that
is quite different from those for a finite number N of dis-
continuities (u — N, see Sect. 3). Since u = k/ky = L/,
where | = 1/k, it has a meaning of the number of effec-
tively interacting discontinuities. It also gives a new “effec-
tive” length of the trapped mode in a periodic structure:
I~ /Dl/2 = \/Db3/(2u2 A). The frequency shift down
from the cutoff frequency for this trapped mode instead of
Eq. (3) becomes

Aw = w  A/(bD) . (15)

We checked Eq. (15) by numerical computations treating
one structure period as a closed resonator, because metallic

end walls placed in midpoints between enlargements would
not disturb the fields. The results agree well.

The resonant coupling impedance per period is a rather
complicated expression, see [6]. Its asymptotics are: for
short distances (p < 1),

Zo  2bsin®{uy D/(2b)]
B = S s %)
Tt J(p) p1D/(2b)
that is independent of enlargement area A, except that
this asymptotic is valid when 2b < D < I = b3/(u}A),
while in the opposite extreme (p > 1), R, — Ry « AS.
Since A is small (d = p2A4/b? « 1), the impedance per
period is much larger for short-period structures.

4.2 A Few Discontinuities per Period

In the case when there are N enlargements per period, a
system of 2N homogeneous equations differs from that in
Section 3 only by two first and two last equations, due to
periodicity, and is studied in the same way. For example,
for N = 2, the equation for k takes the form:

(1—y)(1 - y2) — e™ %9y yy — 2e~*D
+e P (1 y) (1L + ) — e P8y g, = 0,

(16)

where g is the distance between the discontinuities, ¢ <
D. When discontinuities are identical, y; = y, = y, it
factorizes into two equations (v = 1/y):

u= 14 e ¥ £ (e7 4 e~ H P (1 — eUP) (17)
where p = dD/b and r = dg/b, r < p. The first of
them always has a solution, corresponding to a symmetric
mode. The second equation adds an antisymmetric one.
We missed this mode in Section 4.1, because its period is
twice longer than the structure period. The antisymmet-
ric mode exists when (1) p is large enough, and (i) both
k=r/p=g/D and (1 ~ k) are not very small,

5 CONCLUSIONS

Trapped modes in waveguides with many small disconti-
nuities such as enlargements or holes are studied for pe-
riodic and aperiodic structures, see [6] for more details.
Calculated eigenfrequencies are in good agreement with
numerical computations. Most results work also for TE-
and higher-order modes. The results are applied to ob-
tain coupling impedance estimates for the liners (thermal
screens) of large superconducting colliders at frequencies
near the cutoff, see in Refs. [6, 7].
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