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Abstract 

‘The paper considers the choice of the shape, size and pat- 
tern of pumping holes in collider liners to minimize the 
coupling impedances while meeting vacuum and mechani- 
cal requirements. It summarizes results of analytical, nu- 
merical and experimental studies of this issue at the SSCL. 

1 INTRODUCTION 

Designs of modern high-energy superconducting collid- 
ers anticipate a thermal screen (liner) inside the vacuum 
chamber to screen cold chamber walls from synchrotron 
radiation. Pumping holes in the liner walls are required to 
keep high vacuum inside the beam pipe in order t,o pro- 
vide for a long beam lifetime. For example, in the present 
design the LHC liner has more than 100 slots per meter, 
the total number is about 3. IO6 slots. The SSC liner had 
two opt,ions: 1300 holes or 350 short slots per meter. A 
thin copper coating of the inner liner walls is anticipated 
to slow down the resistive-wall instability. 

However, the holes are the chamber discontinuities: 
fields diffracted by holes contribute to the beam-chamber 
coupling impedances and, therefore, effect beam stability. 
Due to the large number of holes their contribution to the 
total impedance of the collider can be significant. The cou- 
pling impedances should be minimized to have the stability 
safety margin large enough and allow for a future upgrade, 
e.g. higher beam current. A reasonable choice of the hole 
shape and size, of the number of holes per unit length, and 
of their distribution pattern has to ensure a compromise 
between beam stability, on the one hand, and vacuum, 
mechanical strength and production requirements. 

The main concern in high-energy proton coIliders is the 
coupling impedance at low frequencies, below the cham- 
ber cutoff, since a typical bunch length is a few times 
larger than the chamber radius. However, resonances at 
higher frequencies can cause multibunch instabilities be- 
cause wake fields excited by a bunch-current perturbation 
will reach following bunches. 

2 LOW-FREQUENCY IMPEDANCE 

An analytical calculation of the longitudinal and trans- 
verse coupling impedance of small holes in the perfectly 
conducting walls of the vacuum chamber at low frequen- 
cies has been carried out in Ref. [l] for an arbitrary-shaped 
hole in the chamber with a circular cross section, using the 
Bethe theory of diffraction by small holes [2] and an ex- 
pansion over waveguide eigenmodes. The paper [3] gives 

an alternative derivation and includes effects of wall thick- 
ness. In these papers the impedance is expressed in terms 
of hole polarizabilities, which are purely geometrical fac- 
tors at low frequencies and can be found by solving a corre- 
sponding electro- or magnetostatic problem, e.g. [4]. The 
longitudinal impedance of a hole in the chamber with the 
circular cross section of radius b is inductive: 

w (% + 0,) Z(w) = -i.&; 
4Gb2 ’ (1) 

where Ze = 1207r fit, and o,, cy, are electric and magnetic 
polarizabilities of the hole, respectively. The transverse 
impedance of the hole is 

+ %A+cY,.+ 
21 (w) = -470 ~ +bzj ah cos(ph - ‘Pb) t (2) 

where a’,, is the unit vector directed to the hole in the 
chamber transverse cross section containing the hole, ph 
and pb are azimuthal angles of the hole and beam in this 
cross section. It is worth noting that both the longitudinal 
and transverse impedances are proportional to the sum of 
polarizabilities, (a, + a,) > 0.l A generalization to an 
arbitrary chamber cross section [5] shows that the same is 
valid in any chamber. 

For a circular hole with radius a in a thin wall, when 
thickness t < a, polarizabilities are [2]: 

a, = 4a3/3 , a, = -2a3/3 , 
and Eqs. (1) and (2) have very simple form. For the hole 
in a thick wall, t 1 a, the sum (a, + a,) = 2a3/3 should 
be multiplied by a factor 0.56 [3]. 

There are analytical expressions for polarizabilities of 
elliptic holes in a thin wall, see [4], and recent study [6] 
gives thickness corrections for this case. Surprisingly, the 
thickness factor for (cy, + a,) exhibits only a weak depen- 
dence on ellipse eccentricity E, changing its limiting value 
for the thick wall from 0.56 for E = 0 to 0.59 for e = 0.99. 

For a longitudinal slot of length 1 and width w, w/l 5 1, 
in a thin wall useful formulae are obtained in [7]: 
for a rectangular slot 

a, + cr, = ~~(0.1814 - O.O3447u/l) ; 
and for a rounded end slot 

a, + N, = w3(0.1334 - 0.0500w/l) ; 
substituting of which into Eqs. (1) and (2) gives the 
impedances of slots. Fig. 1 compares impedances, calcu- 
lated analytically, for different shapes of pumping holes. 
Numerical computations which include thick-wall effects 
give a similar picture, cf. [8]. 

‘In fact, it is rather a difference because oe and am have opposite 

signs. 
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Figure 1: Slot impedance versus slot length 1 for fixed 
width w in units of the impedance of the circular hole 
with diameter 2~;. 

Taking into account pumping area of holes, one can con- 
clude that elongated elliptical slots are the best choice. 
Rounded-end slots are good also, and they are much eas- 
ier in production. However, very long slots are unaccept- 
able in superconducting colliders due to low mechanical 
strength of the liner with long slots, and because of their 
high-frequency impedance, see below. 

The low-frequency impedances given by (1) and (2) are 
in good agreement with simulations, e.g. [8, 9, 111, and 
measurements [lo]. 

Due to additivity of the impedances at low frequencies, 
analytical results give reliable estimates of the liner cou- 
pling impedances in this frequency range, see Table 1. Es- 
timates [7] are for two versions of the SSC liner: 1300 holes 
of diameter 2 mm (M = 16 holes in one transverse cross 
section of the chamber) or 350 rounded-end short slots 
2 x 6 mm2 (M = 4) per meter, b = 1.5 cm, t = 1.25 mm, 
and pumping area is 4% of the liner surface. For the LHC, 
the parameters are: 130 slots 1 x 10 mm2 per meter (about 
2% of the surface), M = 8, t = 1 mm, effective radius b is 
taken to be 1.5 cm, and the thickness correction factor 0.6 
is used for the estimate. For the SSC the figures should 
be compared with the Collider impedance budget (with- 
out holes): 12/n] = 0.68 s1 and ]Zl] = 40 MR/m, and 
instability thresholds: 3.7 M and 240 MO/m. 

Table 1: Impedances Produced by Pumping Holes 

IZlnll fl IZ.LI/ (MQ/m) 1 
SSC holes 0.13 16 
ssc slots 0.05 6.4 
LHC 0.003 0.1 

3 HIGH-FREQUENCY IMPEDANCE 

3.1 Near Cutoff: Trapped Modes 

It has been demonstrated recently [12] that a small dis- 
continuity, such as an enlargement or a hole, on a smooth 
waveguide can result in the appearance of trapped electro- 
magnetic modes with frequencies slightly below the waveg- 
uide cutoff frequencies. These trapped modes produce nar- 

row resonances of the coupling impedance near the cutoff, 
This phenomenon for a waveguide with many small discon- 
tinuities, which is a good model for the vacuum chamber 
with a liner, is studied in [13]. Using results [12, 131, one 
can estimate the resonance impedance of a liner near its 
cutoff frequency. As an example, we will refer to the LHC 
liner. The “effective” area A due to A4 = 8 slots in one 
transverse cross section is [13] 

A -+ M$/(4ab) = Mw2s/(4n2b) = 0.135 mm’, 
where we use transverse magnetic susceptibility $J E 
2a, = w’Z/n for a narrow long slot in the thick wall, e.g. 
in [7]. The length of the region which would be occupied 
by the field of the trapped mode for a single discontinuity 
with this area is 11 = b3/(pfA) = 4.32 m. Since it is much 
longer than the longitudinal separation between adjacent 
cross sections with the pumping slots, which is g = 6 cm, 
discontinuities strongly interact each other. According to 
[13]) the number of discontinuities, which work as a single 
combined one, is N,ff = m N 12, and the new “ef- 
fective” length of interaction L = m = 36 cm. The 
frequency shift for the trapped mode, Eq. (15) of [13], is 
Af/fl = 1.5 10-4, i.e. Af r 100 kHz for the cutoff fre- 
quency fi N 7 GHz. The gap between the trapped mode 
frequency and the cutoff is rather small, but still larger 
then the resonance width due to the energy dissipation in 
the walls: yi/wi = 6/(2b) cz 2.5. IO-“/m, where S is 
skin-depth and RRR is the ratio of the copper conductivi- 
ties at cryogenic and room temperatures, which is usually 
30-100. The radiation width ~,.~d/wi c( 4&t, see [12], and 
it is very small, since the external magnetic susceptibility 
$e,t is exponentially small compared to the internal one, 
$J, due to the thick wall, e.g. [6]. So, the resonance width 
is small compared to the frequency gap, and the trapped 
mode exists. 

Should discontinuities be far separated, g > II, the total 
impedance of the ring would be just a sum of contributions 
RI = 4ZopiA3/(aJf(p1)6b5) [13] from all N = 2rR/g 
discontinuities on the ring (R is the machine radius): 

ReZ ArR, - = - =: ?T!k& = 8ZoA3 
n n 9Pl J:(mW4g 

(3) 

Since g < Ii, the interaction of discontinuities should 
be taken into account. One should consider each group 
of N,ff discontinuities as a single combined one, and the 
number of such group on the ring is N, = N/N,ff = 
xR/L. Then the estimate follows from Eq. (3) with re- 
placements N -+ N/Neff and RI + N e3fjR1: 

ReZ 
Nzfj 2”bR, = 

162cA2 
__ = 

n 9Pl dJ?(mNv2 ’ 
(4) 

that gives Re Z/n N 5.5 R for the narrow-band impedance 
produced by the trapped modes in the LHC liner (RRR = 
100 is taken). This value for the narrow-band coupling 
impedance is acceptable. 

One can improve and generalize these estimates, consid- 
ering that the pumping holes are not quite identical, since 
they have some distribution of areas. It causes a frequency 
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spread of resonances produced by different discontinuities. 
One can take account of the resonance overlapping using 
a weighted sum in calculating the total impedance of the 
ring, e.g. [14]: Zt,,t(~) = NZ(w) -+ NJdilzu(A)Z(w,A), 
where ~(~4) is the area distribution, /d.4w(A) = 1, 
and Z(w,A) at frequencies near the resonance, i.e. when 
w 2 ‘~‘1 - Aq(A), is 

Z(w, A) 21 i&RI(A)/ (1 - 2 + +@ + i$), 

where RI(A) and Awl(A) are the resonance impedance 
and frequency shift for the trapped mode caused by a dis- 
continuity with area A. If the dissipation is small enough, 
6/(2b) <( Awl(A)/w < 1, the integral over areas can be 
treated like a dispersion integral to get 

Im 
I 

d.4 F(A) F(Ae) 
l-2+$++& ---ia &Aw(A.) ’ 

w 

where A, = A,(u) is the solution of w = WI - Awl(A,). 
In this way, we obtain two impedance estimates. For far 

separated discontinuities, i.e. g 1 11, 

ReZ 4aZo w(A)A2 

- ” P?J:(PI) b ’ n (5) 

with A being the averaged area per discontinuity. This 
estimate is applicable instead of Eq. (3) only when & < 

M’:A 
nb’w(.4j ’ otherwise it would give higher value than (3), that 
is unacceptable because spreading of resonance frequencies 
reduces the impedance. 

For interacting discontinuities, g < II, the estimate is 

ReZ ~KZ‘, - N w(A)A’ 
n - dJ&) bg 

(6) 

Surprisingly, it is just twice the result of Eq. (5). For a 
specific distribution one should take max w(A) to get max- 
imal impedance estimates (5) and (6). Say, for a Gaus- 
sian distribution of areas with standard deviation (TA, it is 
l/(&c~~). If we assume UA/A = 0.1 and apply Eq. (6) 
for the LHC liner, it gives Re Z/n N 3.5 a. This estimate 
is lower than that from Eq. (4), and it is independent of 
the wall conductivity. 

3.2 Above Cutoff 

There are two potential sources of impedance resonances 
due to holes at high frequencies. First, for long enough 
slots resonances with wavelength X = 21, where I is the slot 
length, arise. It is reasonable to use relatively short slots 
in order to move this resonance frequency higher. More- 
over, some distribution of the slot lengths could reduce the 
strength of these resonances. 

Resonances of another kind are related to the periodic- 
ity of the hole distribution along the liner. This issue was 
studied in [15] using an analytical model. An exactly peri- 
odic structure would have narrow and high resonances (up 
to 3OOm Q for the SSC liner with 2 mm holes). For- 
tunately. the periodicity of pumping holes in the liner is 
violated by various irregularities like interaction and utility 

regions, etc. It reduces these resonances significantly (to 8- 
12 R for the above example). Some intentional additional 
violation of the hole periodicity can further reduce high- 
frequency resonances (in the extreme of a “random” hole 
distribution for the SSC liner, these resonances disappear 
in the background 0.2 0). In fact, even small “random” 
longitudinal displacements (a fraction of radius) of holes 
from their positions in an exactly periodic array reduce 
the resonances by the orders of magnitude. The numerical 
comparison of periodic and “random” hole distributions 
[9] is in favor of the last one. 

It should be also noted that the impedance estimates 
for the trapped modes in a liner as in a periodic struc- 
ture would be much higher than those in Sect. 3.1, see 
in [13]. However, since even small periodicity distortions 
drastically reduce the resonance coupling impedance of the 
structure, estimates (4) and especially (6) are more appro- 
priate. 

4 CONCLUSIONS 

There is a good understanding of the low-frequency cou- 
pling impedances of pumping holes in liners. The analyt- 
ical methods are confirmed by simulations and measure- 
ments, and give accurate and reliable impedance estimates 
in this frequency range. They dictate narrow pumping 
slots as the best choice. 

The impedance behavior at high frequencies depends on 
hole distribution patterns. In an optimal design one should 
avoid exact longitudinal-periodic patterns. It is also rec- 
ommended to introduce additional spreadings both in the 
hole longitudinal positions and in their sizes. 

The author would like to express his sincere gratitude to 
his former colleagues at the SSC Lab for useful discussions 
and remarks, and for their support. 
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