Analysis of Axial Symmetric Structures with Losses

W. Bruns, M. Filtz
Technische Universitdt Berlin, EN-2, Einsteinufer 17, D-10587 Berlin

Abstract

The fields in periodic and nonperiodic accelerating struc-
tures with arbitrary conductivity and permittivity are cal-
culated. In the case of periodic structures, the fields in
a rectangular structure are found by mode matching at
a plane surface y = const.; In the nonperiodic case, the
field of an rotational symmetric structure is found by mode
matching at planes z = z,,. Fields are shown for structures
with copper walls and dielectric walls.

1 ROTATIONAL SYMMETRIC
STRUCTURES

The analysis of rotational symmetric structures with losses
is in principle the same as the analysis of structures with-
out losses. The main difficulty is the calculation of the
propagation constants in a volume with different permit-
tivities.

Consider a tube of radius b filled with two different ma-
terials: for ¢ < a a material with ¢ = &, p = pq, for
a < p < b a material with e = &3, 4 = py. The outer
wall at ¢ = b is infinitely conducting. By allowing a com-
plex permittivity &; = eg(es — 60) the case of conducting
materials can be treated this way also.

The transverse magnetic field in this tube can be de-
scribed in the case of no azimuthal dependence as a sum
of modes indexed with j in the areasi =1 and i = 2;

k2 = wiue
Eij = e(,,k Ri;(0ai5) U(PJZ)
E; = €&,jwRi;(on;) -é—;Z,-j (p;z)

For the inner area 1, the function Rj;(pq;) is just the
Bessel function Jo{oq;), for the outer area 2, Ra;{ogz;)
is a linear combination of Bessel and Neumann functions
Jo(), Y5() to satisfy the boundary condition at ¢ = b.

(b¢12;)
Yo (bgz;)

The function Zi;(p;z) is a linear combination of exponen-
tial functions describing the exponential growing or decay-
ing waves:

Ry;(0q25) = Jologas) — Yo(ngg)

Z,'} (pjz) = A¢j€+jp’z + B,‘je—‘jp’z
The continuity requirements for the tangential fields at

0 = a lead to a homogeneous equation for the propagation

constants p; = \/wime; — qp; = Vwiiaes — go; whichs
determinant reads:
2

Det =0 = J(I)(qua‘)RZ(QZja)—

ey (g2;0) Jo(q1,a)
From the solution of this transcendental equation the ra-
tios Ay;/As;, B1j/Baj can be calculated.

Fig. 1 shows a part of the relief of this determinant as
a function of gz; for a structure with copper walls. This
determinant is a analytical function and therefore the min-
ima of its relief are zeros of the function itself.

Figure 1: Relief of log(1+ |Det(qg;)]) in the complex plane

In a structure with crossectional jumps, the fields left
and right of the plane z = z, of the jump have to be
matched.

Now the fields get another index: B;,, E;, for the j.th
mode in the area z,_7 < z < z,, the index i for the
different radial dependency on the material is dropped.

We expand the boundary conditions at such a plane z =
2y, in orthogonal functions Bj », B a:

0 Hg,(z:zn—())—H@(z=zn+0)
0 = Ez=2,-0)-E,(2=2,+0)

=0 = st Bi )EMM dA
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0= Y / (Ejn-1 — Ejn) BsndA
g=1

These are an infinite set of linear equations for the un-
known amplitudes A;;,,B1j,.. Setting one of these to a
nonzero value transforms the linear equation to an inho-
mogeneous that can be solved after truncation.

The above method was applied to structures with di-
electric walls and conducting walls. Fig. 2 shows the field
in a structure with 4 cross sectional jumps where a wave
is incident from above. The inner material is vacuum, the
outer material has a permittivity of e, = 5.1.

S
A
LN

i

[

)

%LZ

222007111 H\\ﬁ\\&d
&
SsSWWWWHH 77777

K

(T

Figure 2: Field pattern in a tube with dielectric walls

2 RECTANGULAR STRUCTURES

In order to explain the principle of our analysis in an easy
way as a first and very simple example we treat an ar-
rangement of two resonators coupled by an iris with finite
conductivity (Fig.1).

The basic idea to solve the given boundary value prob-
lem is to use complex orthogonal functions, the eigenvalues
of which are solutions of a complex transcendental equa-
tion.
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Figure 3: Two iris coupled resonators and electric field
pattern for kga = 1.73956

For simplicity but without loss in generality we first con-
sider a two dimensional problem independent of the coor-
dinate z. Furthermore we assume a current sheet ij, e,
in the plane y = 0 producing an exciting electromagnetic
field which reads in frequency domain

g _fpcosko(y —a)
=2

E(e) :jZOiSin kg(’y - a)

cos koa 2  coskpa

bl
(1)
with ko = w/cp and Zg = "?ﬁ To describe the secondary
field due to the iris we separate the whole region into three
sub-regions and obtain in region 1 using a compact matrix
notation

H®Y = FT(2)sin(Ay)A + H®

(2)

F(z) is a column matrix with elements cos(inz/L), L =
g+d, A a diagonal matrix with elements A\? = k2 — (iw/L)?
and the column matrix A contains constant values A4; at
present unknown.

For region 2 and 3 we define common eigenfunctions in
the form

EY = jZoFT(Z)kA cos(Ay)A + E*
Q

| cospazf cospyd , 0<2<d
Gilz) = { cospoi{z— L)/ cosppig , d<z<L (3)
and the electromagnetic field reads
H®3) = GT(2) cos Q(y ~ b)B
2
29 - iz e ol K B 0<z<d
EP) = —jZ0ke G (2) Q/k? sinQ(y—h)B, i<z<L
(4)
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where k3 = k2 — jkoZox and the diagonal matrix Q con-
tains the elements ¢? = k2 — p3; = k2 — pi,.

From the continuity conditions at z = d it can easily
be shown that the complex eigenvalues py; and py; are
solutions of the following transcendental equation

(l+'y){1—v2w2}+(1—7){w2—v2}=0, (5)
where

. k2 .
id 0 P2i

w = P2 , 7= p

2 Poi

v = edpoig ,
For the limiting case x — oo the solution of (5) is given
by two sets of eigenvalues

poig =tm , pund=(2i - 1)7/2

which we can use as starting values. The first set cor-
responds with eigenfunctions mainly concentrated in re-
gion 3 and the second one corresponds with eigenfunctions
mainly concentrated in region 2.

In order to determine the unknown coeflicients A; and
B; we have to fulfill boundary conditions at y = a. Per-
forming the necessary orthogonal expansion we make use
of the orthogonality of the eigenfunctions G;(z), i.e. the
following integral produces a diagonal matrix N

d L
%/G(Z)GT(z)dz+/G(z)GT(z)dz:N.L . (6)
0 d

Expanding now the magnetic field in region 1 in terms of
the eigenfunctions G;(z) and the electric field in region
2,3 in terms of the eigenfunctions F;(z) we finally get an
infinite set of linear equations determining the unknown
coeflicients.

For the numerical evaluation we define a characteristic
impedance

L
Z= ‘/Eﬁ“(&z)e)‘wdz, == (1)

w
0

where w is the z-dimension of our structure. Fig.2
shows the absolute value of Z in the vicinity of reso-
nance kga = 1.7396 for copper with k = 55 - 10*/Qcm
and w = a = 2d = lem, b = g = 2cm. The resulting
Q-value is 29000. As shown in Fig.3 the Q-value grows
linear with /k. This behaviour is the same as expected
from a power loss calculation.,
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Figure 4: Absolute value of the impedance in the vicinity
of resonance
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Figure 5: The Q—value as a function of
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