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Abstract 

The status of the finite element package PRIAMANTIGONE, 
developed at LAL for electromagnetic engineering, is 
presented. A short review of the available capabilities of the 
package is given. 

1 INTRODUCTION 

The design of accelerators and detectors needs computing 
tools for solving the Maxwell’s equations in two as well as in 
three dimensions. There exist for a long time different 
programs treating electromagnetic problems, which are based 
on finite difference methods. The finite difference methods 
are popular, mainly because they seem to be staightforward to 
implement. However they present some drawbacks as, for 
instance, the necessity of special treatments on the boundaries 
or the difficulty of moduling the density of the mesh of the 
computed structure. 
Finite element methods do not present these drawbacks ; that 
is why they are more and more used in the electromagnetic 
domain. An other advantage of using these methods is the 
possibility of coupling electromagnetic calculations with 
mechanical, thermal or other calculations, where f.e.m. are 
widely implemented for a long time. 
We present here the status of a package developed at LAL [ 11, 
PRIAM for 2D case and ANTIGONE for 3D, using Raviart- 
Thomas [2] and Nedclcc [3] finite elements based on the 
properties of the operators div and curl involved in the 
Maxwell’s equations and related to the well-known physical 
laws : Gauss’s, Ampere’s, Faraday’s, Applications of the code 
are described by other authors in this conference [4]. 

2 THE FOUR VECTORS DESCRIBING THE 
ELECTROMAGNETIC FIELD 

The electromagnetic field is characterized by four vector 
fields : 2,8’, B’,g satisfying the four Maxwell’s equations : 

afi 
-++curlfi=~ 
at 

dB 
3t+cur1E=0 

div fi = p (3) 

div g = 0 

together with the constitutive relations : 

(4) 

5=&E. 
i=,Ufi (5) 

p and 7 are respectively the charge and current density, E and 
p- are permittivity and permeability of the medium. 

When solving these equations on a bounded domain one has 
to take into account boundary conditions and, in the case of 
evolutive problems, initial conditions. 
In applying numerical formulations one usually takes care of 
the continuity of the physical quantities as potential or fields. 
This point is important in presence of different media in the 
structure : the right continuities have to be ensured on the 
interfaces. The problem may be not trivial, if the choice of the 
numerical method is not adapted. Concerning the Maxwell’s 
e uations it is worth noting that only normal components of 
Qand B’ and tangential component of ?? and 2 are 
continuous on interfaces between different media. In a similar 
manner the boundary conditions are of two types : erfectl 
conducting walls where tangential components of jand 4 
vanish and svmmetrv boundaries where normal comuonents 
of 8 and gvanish.’ 

3 A MADE -TO -MEASURE FINITE ELEMENT 
FORMULATION 

Take, for example, the electrostatic problem. The principle of 
a “classical” f.e.m. would be to search the potential under the 
form of a linear combination of well chosen basis functions 
(or interpolation functions) w(x,y,z) : 

“(X,)..z)=~~~;(X~Y.ll 
t=I 

(6) 

the unknowns of the problem,Vi , beeing the values of 
potential on “nodes” of a mesh which can be irregular. N is 
the total number of these nodes. The formulation is consistent 
if the w’s satisfy the following relations (if xj, yj, zj are the 
coordinates of the node number j) : 

(Kronecker’s symbol) 
The electrostatic problem may be solved, for example, by 
putting the above expression for V in Euler’s equations of the 
electrostatic energy minimization problem (variational 
formulation) leading to a linear system for the Vi ‘s. If, for 
instance, the computational domain is meshed with 
tetrahedras (what we will assume from now on), the linear 
approximation consists of taking the vertices as nodes and the 
barycentric coordinates as basis fonctions. By this method we 
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get continuous potentials. The electric field derivated from 
this potential is not continuous, nor its tangential component 
on interfaces. In the following, this finite element will be 
called “PI”. 
There exist a little bit more sophisticated, so called “mixed” 
finite elements. Through this formulation, the calculated 
quantity is not only the potential but both -if and V. 
8 is searched under the form : 

N 
IJ(*yy,Z)=$@i rs,(x*Y3Z) (7) 

r=l 

The unknowns @, beeing now fluxes of -8 through the faces 
of the tetrahedras (in the case of linear approximation). 
Consequently the basis functions have to satisfy : 

51 Gi. iijdS = ~5~ (8) 

This surface integral is taken over the face number j, 
-3 
n j is 

the unit vector normal to that face, outgoing from the 
tetrahedron to which the basis vector function is related. For 
consistency reasons V is supposed to be constant in each 
tetrahedron. 
These expressions are put, as before, in Euler’s equations of a 
energy minimisation problem. There are at least two 
advantages in this approach arising from the fact that the 
unknowns of the problem are fluxes of -8, i.e. normal 
components of this vector: a) one can ensure strictly the 
Gauss’s law when integrating on the surface of a tetrahedron, 
b) one get automatically the right continuity for normal 
component of ‘rf on interfaces between different media. In 
the following this finite element will be called “H(div)“. 
In a very similar manner one can define a finite element 
whose unknowns are circulations ( instead of fluxes) along 
edges of tetrahedras, ensuring Faraday’s and Amp&e’s laws on 
each of them and the right continuities of tangential 
components. These elements will be called “H(cur1)“. 
Combining these three kinds of elements the 
PRIAM/ANTIGONE code solves specific electromagnetic 
problems (electrostatics, magnetostatics, eigenmodes...) as 
well as the full time domain Maxwell problem. 

4 STATIC DOMAIN 

Electrostatics 

The package offers the possibility of using both PI or H(div) 
elements. The first one is recommended when the user is 
interested in getting good values for the potential. The second 
one is well suited in presence of different kind of dielectric 
materials ; this is especially true when one is interested in 
getting values of capacities. 

Mngneto.stchx 

element is used in solving the magnetostatic problem 
as unknown: 

CUT-l&j 
div(pI?) = 0 

(9) 

Although not yet programmed in PRIAM/ANTIGONE an 
other formulation2 possible using a H(div) element solving 
the problem with B as unknown: 

div i = 0 

E : (10) 
curl-= J 

P 

The choice between the two possibilities depends on whether 
one wishes to ensure the right continuity on interfaces for Tt 
or for 2. 

5 FREQUENCY DOMAIN 

In the frequency domain the mixed finite elements provide 
very attractive results. The HF eigenmode problem for the 
electric field 2 is : 

Ld-curlE = w2i 
E P (II) 

with the boundary condition on conducting walls : 

Exn=o 

Obviously the H(cur1) element is very well suited in solving 
this problem. The formulation provides values of the 
circulation of 3 1 a ong t e e ges of the tetrahedras. So it is h d 
straightforward to get values of the fluxes of magnetic field Ir’ 
on the faces of the tetrahedras through the relation : 

II ti.ndS=-‘ll,,,r~~.i;dS=-l~ii~=C1 +C2+c3 (12) 
F 

i0 
F 

if3 

Cl, C2, C3 beeing the previously calculated value of the 
circulation of E along the 3 edges of the face F. A very 
interesting property of the method is that it does not provide 
any “spurious” (or “parasitic”) mode unlike more classical 
approaches. In these latter the phenomenon seems to be due to 
the fact that these formulations do not ensure the divergence 
free condition for 8 = E??. The H(cur1) element leads 
intrinsically to a divergence free 8. 
The vector3 I 1s so utlon o t f h e same eigenvalue problem as 2 
(but with “dual” boundary conditions). Both formulations (in 
E and in H) are implemented in ANTIGONE (3D). It can be 
shown that H-formulation approximates the frequency by 
upper values whereas the E-formulation approximates it by 
lower values. In this manner we can get a range within lies the 
exact value. It worth noting that in the 2D case the H- 
formulation is equivalent to the method used in the well- 
known program SUPERFISH. 
In PRIAMlANTIGONE quasi-periodic boundary conditions 
are implemented in addition to the classical ones. 
In the 2D case it is possible to get “transverse modes” 
(dipoles,quadrupoles etc.) for an axisymmetric geometry. 
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6 TIME DOMAIN 

The use of the H(div) and H(cur1) element for spatial 
discretization can he coupled with a time scheme for solving 
evolutive problems described by the equations (1) and (2) 
rewritten under the form : 

i?D : 
-=j --curlI? 
dt 

ae zz -curl E 
(13) 

dt 

PRIAM/ANTIGONE use a “leap-frog” scheme. 

given (curl z)n-1/2 and B)” at the time step n, the time step 
n+l consists in the following : 

. calculate the time derivative of the circulations of 2 along 
edges of the tetrahedras (H(cur1) element) ; 

l (curl Ejn+li2 = (curl E)n-112 + At 
c, + i; + c3 

on each 
v 

tetrahedron (volume V) ; 

l Ijn+l 
= B” - At(cur1 E)n+“2. 

This scheme is used with the driving term 7 equal to 0 
(travelling waves calculations) or equal to a given function 
(wake field calculations). If particles are present in the 
structure, the driving term has to be estimated as we will see 
belo\+. 
The Maxwell’s equations (3) and (4) are automatically 
satisfied if they are at the initial time. 
In the time domain absorbing boundary conditions (“open” 
boundaries) are implemented, in addition to usual ones. 

7 SELF- CONSISTENT CALCULATION WITH 
PARTICLES 

In presence of a charged particle hey, the particles 
contribute to the the driving terms p and J Such a beam is 
modelized by a set of macroparticles represented as Dirac 
distributions, so we have : 

(14) 

@,, =-f&E+ cp, x 6, (15) 

(e,m charge and mass of the considered kind of particle ; c 
light velocity, Pp ratio of the macroparticle velocity to c) 
The time cycle of such a program consists of the following 
steps : 
l solve the field equations (finite element method, here 
H(curl) element) with current positions and velocity of 
macroparticles ; 
l from the field provided by the preceeding step, get the fields 
at the current positions of the macroparticles ; 
l from these fields solve the Newton-Lorentz equation for 
each macroparticle (A Buneman-Boris algorithm is used) and 
update macroparticles positions and velocity. 
The implementation includes the generation of particles at 
emitting surfaces following rectangular or gaussian pulse 
shape. Any shape is easily programmable. 
Different initial conditions are available : electrostatic field, 
RF field etc. These fields are computed on the same mesh 
with the described above finite elements, avoiding any 
interpolation. 

8 INTERFACES 

The PRIAM/ANTIGONE package do not impose the use of 
determined mesh generators nor postprocessor. It can be 
interfaced with any finite element package or graphical 
software. At the moment interfaces with MODULEF, 
ANSYS, SYSTUS finite element mesh generators are 
available. Implement other interfaces is straightforward. 
The code is written in standard FORTRAN-77 and therefore 
can be implemented on any system. 

9 CONCLUSION 

PRIAM/ANTIGONE offer a appreciable number of modules 
for solving the Maxwell’s equations both in two and three 
dimensions, in static, frequency, time domains as well as in 
the particle coupled case. The package presents the advantage 
of using a consistent finite element formulation taking into 
account foundamental properties of the Maxwell’s equation 
which can be interpreted in terms of continuities of field 
components. 
Further developments are planed in the harmonic domain, 
especially S-matrix computation. 

qp, rp, vp beein, (7 respectively the charge, position and 
velocity of the macroparticle p, The Maxwell’s equations are 
solved for each time step by the above described space 
discretization and time scheme. In the finite element 
formulation the Dirac distributions for the driving terms occur 
inside integrals and are regularized from this fact. 
In addition to the Maxwell’s equations we have to take into 
account the Newton-Lorentz equations for each 
macroparticle : 
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