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ilbstract 

The ground state of a crystalline beam in a realistic storage 
ring is well underst,ood by now. No crystalline beam exists 
in a constant gradient storage ring, but in an alternating 
gradient (ilG) ring crystalline beams exist at all density 
as long as the beam energy is smaller than the transition 
energy. However, since the Hamiltonian is time dependent, 
the total energy of the beam is not a constant of motion. 
As a result, the crystalline beam will gradually heat up and 
eventually melt if not refrigerated. Here, we show that if 
the frequency due to the AG lattice is lower than twice 
the betatron frequency, heat will transfer into the system 
extremely fast so that a crystalline beam can not last a 
meaningful period of time (except at very low density). On 
the other hand, if the AG lattice frequency is higher than 
twice the betatron frequency, the heat transfer is slow, and 
the crystalline beam can last for a long time. We therefore 
arrive at the conclusion that in order for a crystalline beam 
to be conveniently observed, the storage ring should be 
designed such that the AG lattice frequency is as high as 
possible while the betatron frequency is kept as low as 
possible. 

1 INTRODUCTION 
Crystalline beams have been proposed and studied for 
quite some time[l], in ideal hypothetical storage rings, and 
the ground state and other properties were investigated[2]. 
But only recently the feasibility of crystalline beams 
in realistic storage rings were at,tacked by the current 
authors[3]. In our approach, a Hamiltonian in the rotat- 
ing beam rest frame was derived in which the focusing 
force (const,ant or time-dependent) and general effect of 
the bending and non-bend (straight) sections are all cor- 
rectly t.aken into account. This Hamiltonian was used to 
study the existence and properties of crystalline beams. 
When crystalline beams exist, their ground state struc- 
tures were found be very similar to the ones found by other 
authors using hypothetical Hamiltonians, except that the 
“ground states” are generally time-dependent. However, 
our Hamiltonian enables us to establish criteria under 
which crystalline beams can exist. Specifically, we found 
that in a constant gradient (weak focusing) storage ring, 
a crystalline bearn can never exist, simply because of the 
lack of focusing force to keep the particles move together. 
In an alternating gradient (.4G) storage ring, we found 
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that crystalline beams exist at any density if and only if 
the beam energy is lower than the transition energy of the 
storage ring[3]. 

Fig. 1 shows an example of the ground state of a crys- 
talline beam. The linear particle density is in reduced 
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Figure 1: A crystalline beam ground state at high density, 
with straight sections in the storage ring. 

unit[3] 25 (N =lOOO, L = 40). The storage ring con- 
sists of 10 identical FODO cells, each containing focus- 
ing quadrupole, dipole, defocusing quadrupole, and drift. 
The transition energy is 2.6, and the beam energy is 1.4. 
This example indicates that crystalline beams do exist at 
high density, and the straight sections of the storage ring, 
though producing shear, do not destroy the nice ground 
state pattern. 

Since a constant gradient storage ring can not give us 
a crystalline beam, the Hamiltonian is necessarily time- 
dependent, and the total energy of the system is not a 
constant of motion. Therefore, heat will transfer into the 
system, and the crystalline beam will heat up and melt 
eventually if cooling is not applied constant,ly[4]. Here, we 
answer the question how fast heat transfers into the sys- 
tem, and derive yet another criterion that has to be sat- 
isfied for crystalline beams to exist. Conditions are given 
under which high quality crystalline beams can be practi- 
cally achieved. 

2 MECHANISM FOk HEAT 
TRANSFER 

The Hamiltonian that describes particles in a storage ring 
is, in reduced units[3], 

H = ~(p:+P~+P~)--,~r,+~[(1-n)r2+ny2]+li, (1) 
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where P,, Py and P, are the canonical momenta of a parti- 
cle, 2, y, z are its coordinate, V, is the Coulomb interaction 
energy between the particle and all the other particles, and 
n represents the strength of the focusing magnetic field 
which is a periodic function of time. In smooth approxi- 
mation, (1 -n) (the coefficient of x2) is replaced by v,” and 
n (the coefficient of y2) is replaced by Y$, where v, and z+, 
are the betatron frequencies. In this limit, the Hamilto- 
nian is time-independent, the ground state structure can 
be easily found, and it is trivia1 to calculate the phonon 
spectrum. Take a one-dimensional chain as an example, 
the three branches of dispersion are, 

qJ(k) = f{vZ + cl:. * [(v,” + 0;)” - sQ~(v,2-+~;)]~, 
w;(k) = VY” - n;, 
where (2) 

O3 1 - cos(knA) !c?;=2c 
n=l 

n3A3 ’ 

the crystal momentum Ic is between -r/A and +x/A, 
and A is the inter particle distance which is, of course, 
determined by the density. Since the y direction is not 
coupled with the 1: and z directions, w2 is purely polarized 
in the y direction. The z and z directions are coupled 
with each other, but at k = 0, UJI = v, (with the plus 
sign) is purely 2 polarized, and wg = 0 (with the minus 
sign) is purely z polarized. The phonon modes are singular 
at Ic = 0 due to the long range Coulomb interaction, but 
the singularity is very week, only logarithmic in nature 
[actually k(log(k))‘/“], and does not cause any qualitative 
difference in the properties of the crystalline beams. 

Typical phonon dispersion curves and density of states 
(DOS) are shown in Fig. 2. The discontinuity in the DOS 
are due to the Von Hove singularities. The highest phonon 
frequency, wm, is in many cases (although not always) the 
larger of v, and vy. Under certain conditions, WI(~) can 
be larger than v=, but only marginally. 

At higher density, the ground state structure becomes 
two- or three-dimensional, and the phonon modes can no 
longer be found analytically, but must be calculated nu- 
merically. It is found that the phonon frequencies can 
go from zero to wm continuously, the weak singularity at 
Ic = 0 is still there, and it is still true that the highest 
phonon frequency w,,, is closely related to the larger of v, 
and vY. 

Beyond the smooth approximation, time-dependent 
terms like cos(~~ll)rc~ and cos(wrt)y’ appear in the Hamil- 
tonian, where WI is the frequency due to the i\G-focusing 
lattice. Since 1: and y vibrate with the phonon frequencies 
w1,2,3(Ic), these time-dependent terms generate vibrations 
with frequencies WI &w(k). These frequencies form a band 
between WI - w, and WI + w,, and the band is generally 
continuous except at very low density. Typically, a series 
of continuous bands between $1 - w, and jw, + w, will 
form, where j is an integer, due to the higher component 
in the Fourier expansion of focusing-defocusing forces in 
the AG lattice. 
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Figure 2: Typical phonon dispersion curves (a) and den- 
sity of states (b) for a one-dimensional chain in smooth 
approximation, The parameters are: y = 1.1, v, = 2.07, 
vy = 1.38, and A = 1.8. 

If AG lattice frequency WI is smaller than twice the max- 
imum phonon frequency w,, then the phonon band be- 
tween 0 and w, overlaps with the vibrational band be- 
tween WI - w,,, and WI + wm, and resonance occurs, and 
the vibrational amplitude of the particles grows exponen- 
tially, and the crystalline beam will be instantly destroyed. 
Therefore, in order for the crystalline beam to last a mean- 
ingful period of time, WI has to be larger than 2w,. 

In the language of quantum many body physics, the 
AG lattice vibration can emit phonons into the crystalline 
beam (or absorb phonons from the system). Energy con- 
servation requires that 

WI = w(h) + W(h) + . + w(lcn) (4) 

where n is an ingeter. With our Hamiltonian, the prob- 
ability for such phonon emission process (or t,he rate of 
heat. transfer) when n = 2 is practically infinite. As a 
result, if the AG lattice frequency is smaller than twice 
the maximum phonon frequency, crystalline beam can not 
exist. 

Even when LJ~ is larger than 2w,, eq. [4] can st*ill be 
satisfied with n greater than 2, that is, the AG lattice 
vibration can emit more than 2 phonons at a time into the 
system due to the non-linear Coulomb interaction. The 
crystalline beam will, therefore, always heat up if the heat 
is not taken out of the system. However, the probability 
for multi-phonon emission is small, or t,he heat transferring 
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rate is small, and the crystalline beams can last long. As 
a general rule, the more phonons has to be emitted by 
the AG lattice vibration at a time, the smaller is the 
probability, the slower the heat transfers, and the longer a 
crystalline beam can last. Thus, it is desirable to make tir 
as large as possible and w,, or the betatron frequency, as 
small as possible. 

Detailed quant,itative study of the probability for multi- 
phonon emission is under way. Here in the next section, 
we describe some preliminary computer simulation results. 

3 NUMERICAL RESULTS 
Computer simulations for a one-dimensional chain with 
100 particles are performed. The storage ring consists of 
8 FODO cells and several insertions. The periodicity of 
the machine lattice (lattice frequency wr) varies with the 
number of insertions. The beam energy is always chosen 
to be below transition (y < v,). Initially each particle 
is randomly displaced by a small amount in all three di- 
rections from it,s equilibrium position. The equation of 
motion is followed for several thousand time steps, and 
the Fourier transform of the velocity-velocity correlation 
function, which is proportional to the vibrational DOS, is 
calculated by the maximum entropy method. 

Fig. 3(a) shows the DOS with a lattice periodicity 8 
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beam energy 7 = 1.1. The band between 0 and 2.07 is the 
phonon band, corresponding to the phonon DOS shown 
in Fig. 2(b). The maximum phonon frequency w, = 2.07 
is equal to V, in this case. The band between 5.93 and 
10.07 is the wr f u(k) band, and more bands at higher 
frequencies are not shown. In this case, w, is less than 
wr/2 and there is a gap between the two bands, and the 
crystalline beam can last very long. In fact, no obvious 
temperature increase is observed in 30,400 time steps (100 
revolutions) of molecular dynamics simulation. 

Another case is shown in Fig. 3(b) where the lattice 
periodicity is 2 (total 2 insertions, WJ = 2), Y, = 1.18, 
vY = 1.03, and y = 1.001. Now since wm = V, is larger 
than ~r/2, the two vibrational bands overlap. The system 
heats up very quickly, and collapses in 20 revolutions. 

These observations in computer simulations are in per- 
fect agreement with the criterion we established in the last 
section. When WI is larger then 2w,, the heat transferring 
rate is small, and very long molecular dynamics runs are 
needed to observe it. In fact, we believe that computer 
simulation is no longer an adequate tool to measure such 
a small energy transfer, and quantum many-body theory 
has to be employed. 

Another important issue is that in practice, the AG lat- 
tice is not exactly periodic due to the fact that the focusing 
magnets can not be identical. This is a potential problem 
to crystalline beams, but studies of small non-periodicity 
of the AG lattice show that the effect is minimal. 

4 CONCLUSION 
Crystalline beam in a storage ring is shown to be a rich 
subject. It presents to us a lot of challenges and a dilemma: 
on one hand, time-dependent focusing forces are necessary 
for a crystalline beam to exist at all; on the other hand, the 
time-dependent forces pump energy into the system and 
cause the crystalline beam to melt. This paper basically 
solved this dilemma, and a condition is established under 
which it should be possible to observe crystalline beams. 

Specifically, the frequency of the FODO lattice has to 
be larger than twice the phonon frequency, or in most of 
the cases, twice the betatron frequency. How long a crys- 
talline beam can last is eventually limited by the small 
non-periodicity of the FODO lattice, and therefore identi- 
cal focusing magnets are highly desirable. 
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