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Abstract 

We develop a self-consistent, nonperturbative Hamiltonian 
formulation for the Cyclotron-Resonance laser accelerator 
where magnetized electrons are accelerated by circularly 
polarized laser modes. Wave dispersion and frequency, mis- 
match are taken into account, enabling one to show how 
the mismatch can be used to remove some of the ener- 
gization limits imposer by dispersion. We make use of 
an analytical macroparticle (or bunching) approximation 
which is shown to be accurate when the initial energy of 
the accelerating particles es small enough. Wave-particle 
numerical simulations are used to precisely establish the 
validity of that approximation. Beyond these limits, bi- 
furcated periodic orbits and chaotic motion characterized 
both by resonance overlap and positive Lyapunov expo- 
nents are shown to occur. 

1 INTRODUCTION 

A promising configuration for laser acceleration is the 
so called cyclotron-resonance laser accelerator (CRLA), 
where a coherent electromagnetic wave may transfer a 
large amount of energy to a beam of electrons gyrating in 
a guide magnetic field. This large amount of transferred 
energy takes place because of the autoresonance mecha- 
nism [l, 21 where, under some ideal conditions, an initial 
wave-particle synchronism is self-sustained throughout the 
accelerating period. 

It has been observed, however, that one of these CRLA 
ideal conditions is hardly obtained in feasible experimental 
schemes. This particular condition is the one requiring 
the laser field to be dispersionless [3, 41, a very restrictive 
condition if one takes into account dispersive effects arising 
from the confining wave guides [5]. 

In the present work we perform an improved analysis 
of the mentioned self-consistent wave-particle interaction, 
taking into account a possible frequency mismatch between 
wave and particles. We will show how the frequency mis- 
match can compensate the dispersion effects. Moreover, 
we numerically integrate the motion equations of a large 
number of electrons interacting self-consistently with the 
wave in order to test the efficiency of the particles phase 
space bunching process that is supposed to occur[3]. We 
show that for small initial energies this process effectively 
takes place, validating theoretical predictions. Otherwise, 
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a total spread is found and chaotic trajectories may arise. 
The onset of chaos is studied by means of bifurcation the- 
ory. 

2 SELF-CONSISTENT HAMILTONIAN 
FORMALISM 

Let us consider an electron beam and a circularly polar- 
ized electromagnetic wave, co-propagating along the ho- 
mogeneously magnetized z axis of the chosen reference 
frame. 

The circularly polarized wave vector potential is writ- 
ten as $$A 3 -i fi eiO ei3 (f*-t) 6, + cc. where p and 
o have a slow time dependence, e is the electron charge, 
ec E 12 + ii and ij z w/w,,. The variable w is the 
wave frequency satisfying a dispersion relation of the form 
w/ck = V”WZ f-’ 2 1 with g as a factor accounting 
for dispersion (it could be a factor connected with the fi- 
nite transverse dimensions of some guiding system) and k 
is the wave vector. We introduce we0 3 ]e]B,,,/mc with 
B,,, as the background magnetic field and normalize time 
and space to wcO and w,,/c respectively. 

The slow time self-consistent evolution equation for 
the amplitude of the vector potential is readily derived 
from Maxwell’s equations. Using the so-called macropar- 
title approximation [3], that assumes an extreme bunch- 
ing condition for which the wave-particle relative phase 
4i + G(f zi - t) is the same for all particles it becomes 
possible to write the evolution equation for p and a[4]: 

and 

d,p = -2w 
pm 
p -7j-pG sin(# + a), 

(‘4 

where w,” 5 4re2N/mV mwwcO, with N as the number of 
particles. 

Now, if one re-scales p according t.o p = X/5 with X E w,“, 
the interesting and final conclusion is that all the relevant 
dynamical equations for both particles and fields can be 
derived from one generalized Hamiltonian given by 

7t = [1+21+P,2+X;+ 

2V5YiTj COS(d + i;(f ti - 2) - U’)]l”, (3) 

where I and 4 are the guiding-center variables correspond- 
ing to electronic motion, ,Y is the “momentum” correspond- 
ing to the wave field and u’ (= -u) is its canonically con- 
jugated co-ordinate. 
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Figure 1: maximum energization vs. 5 for Xp = 1 and 
f = 0.9 

Now we write ti = w’ + 6, with in’ = (1 + p)-‘/’ as the 
exact resonant condition(w = weO/y + kvE) for I(t = 0) = 
PZ(t = 0) = 0, and 6 a small mismatch parameter. In 
order to make the Hamiltonian simpler we can introduce 
the canonical transformations 0 + (w’ + 6) f z - w’t -+ 4, 
P, -+ P,+f(w’+QI, a’+& + u’ and 31 -+ 3t-w’I+6p. 
Besides, the adittional canonical transformations 4 -d = 
q%’ and t; = pC - I reduces the degrees of freedom (pc is 
a constant of motion) and allows to write a final effective 
canonical syst)em 31 = --L I + r5(pc - I) + r, with 

r = [l + 21+ [P, + (w’ + 6) f 112 + A (pe - I) + 
2 2 IX (PC - I) cos$]‘/2, 

and dtI = -8+7-c, dt$ = 8~‘H. 
To evaluate the maximum energization, I,,,,, (since I is 

proportional to the energy r in view of the fact that H is 
now a constant of motion), it is possible to combine our 
canonical equations to obtain a closed equation for 1[4] 

In figure 1 it is shown the maximum energization vs. S 
(solid line) for a typical case which lies in the microwave 
range, with a frequency of the order of 10 - 10’GHz and 
a tenuous beam of density N 10gcm-3 in order to define 
a small X = 0.01. As we can see, a judicious choice of 6 
enables the particles to reach energies approximately six 
times larger than in the exact resonant case(6 = 0). 

3 NUMERICAL SIMULATION 

In order to verify the validity of the macroparticle approxi- 
mation for mismatched systems we perform a numerical in- 
begration of 500 electrons in the cyclotron-resonance laser 
accelerator[6]. All the electrons are supposed to initially 
have the same action and to be homogeneously distributed 
along 0 < 4 < 2~. 

In figure 1 we plot the maximumenergization(l,,,) vs. 
the mismatch(h). Solid lines represent macroparticle re- 
sults while symbols represent simulations with I, = 0.001 
(circles) and 1, = 0.5 (squares). One is able to see that for 
a small initial energy phase bunching effectively occurs and 
we have a good agreement between theory and simulation, 
On the other hand, in the case 1, = 0.5 the agreement 
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Figure 2: comparision of particles phase space after 1000 
waves cycles for 6 = -0.1 and (a) 1, = 0.5; (b) 1, = 0.001 

is poor, and the maximum possible acceleration(around 
6 = -0.35) is highly reduced. 

In figures 2 it is compared the phase-space after 1000 
wave cycles of the cases I, = 0.5 (a) and I, = 0.001 (b). 
Once again, it is seen that phase bunching does not occur 
for too large values of the action. Furthermore, we can see 
a chaotic distribution of particles surrounding the eliptic 
fixed point at 4 = a, what indicates that acceleration can 
also occur due to stochastic diffusion in those cases of weak 
bunching. 

4 TRANSITION TO CHAOS 

Given that regular acceleration may not be always domi- 
nant in a CRMA, an issue to be addressed would be the 
possibility of stochastic acceleration. This could be the 
governing accelerating mechanism when beam control is 
poor or even absent. Such is the case of astrophysical 
beams in pulsar magnetospheres, for instance, where the 
usual wave-particle model is identical to the one we shall 
making use of17]. The analysis is also relevant for labora- 
tory schemes where the accelerating length is long enough 
such that the effect of long range inhomogeneities can not 
be left aside. The problem with stochastic processes, as 
ment,ioned before, is that constant amplitude modes gen- 
erates only regular trajectories. One should note, however, 
that slow amplitude modulationsmay easily develop in this 
kind of system because of various factors. Among these, 
at least three can be considered as of relevance. (i) Low 
energy particles, even if in small number, interact with the 
wave and cause pump depletion, so that higher energy par- 
ticles will view the resulting wave as a modulated train[6] 
(ii) Electromagnetic waves are unstable and can frequently 
develop nonlinear amplitude self-modulations[7] (iii) Slow 
modulations on the wave can be produced in laboratories 
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Figure 3: comparision of particles phase space after 1000 
waves cycles for 6 = -0.1 and (a) I0 = 0.5; (b) 1, = 0.001 

by slowly varying control parameters in an experiment. 
We shall show that wave modulation, no matter its pre- 
cise origin, may indeed be responsible for the development 
of bifurcations and stochastization of periodic orbits in 
cyclotron-maser systems. 

An appropriate resonance analysis involves the calcu- 
lation of particle gyrofrequencies. These gyrofrequencies 
should be fully renormalized by the presence of the large- 
amplitude maser modes and can be derived for the exactly 
integrable case where the Hamiltonian is a conserved quan- 
tity, ‘H, -+ ‘?i(I, 4, p = po) s E by introducing an action 
variable J according to[8] 

J=& 
f 

ICE, 4) &. (4) 

Inverting the above equation we can write 7-1, = X,(J). 
By setting J = 0, we find the central fixed points 
CFP* corresponding to the cc-ordinates (&, I*), given 
by cos & = fl and ~317-1,(&., I*) = 0. The renormalized 
gyrofrequencies for orbits around the fixed points, wf, are 
obtained as functions of J from wk = d~3l+ and are plot- 
ted in Fig. 3. It is seen that the gyrofrequencies decrease 
with J. This means that primary resonances located at J,, 
(n = fl, 12, . ..) with nw*(J,) = R and secondary reso- 
nances located at J,,, with n~i(J~,~) = p R. and p # fl, 
are such that larger n’s correspond to larger Jn,p ‘s. As 
we shall be assuming w*(d = 0) > R, this implies that for 
both branches the lower primary resonance present in the 
system will be the one with 17~1 = 1. Elliptic points of a 
J,,, resonance shall be denoted as (Jn,p)e and hyperbolic 
points as (Jn,p)h. 

Attention is focused on primary resonances generating 
trajectories with the same period as the modulation when 
the modulational amplitudes are small. We do so because 
this kind of trajectories tends to be the most stable present 
in the system, a feature leading to conclude that the re- 
spective orbital de-stabilization may be connected with 
global spread of chaos throughout the phase space. The 
behavior of the fixed points as a function of the modu- 
lation amplitude E may be accurately followed with help 
of a Newton-Raphson algorithm and the respective stabil- 
ity diagrams. In the stability diagrams one plots the so 

0.7 

e 

Figure 4: stability index vs. e in the small (upper) and 
large A cases. 

called stability index (a) of a particular periodic orbit as 
a function of the perturbing parameter. If ICYI < 1 the cor- 
responding orbit is stable, if IcrI > 1 the orbit is unstable. 

An important parameter that characterize the transition 
to chaos is the normalized detunning parameter defined as 
A* E (w* - Q)/w*. Typical stability diagrams are show 
in fig. 4, where a comparision is made between the case of 
small and large A. One can see that when A is relatively 
small, only two stale fixed points of the mapping appear, 
one ceases to exists aa it collapses with a neighboring un- 
stable periodic orbit; the other undergoes an infinite cas- 
cade of period doubling bifurcations. When the frequency 
is large, the group contains more than two trajectories. 
The collapsing orbit behaves similarly as in the previous 
case. However, before it vanishes, it goes temporarily un- 
stable within a band of the modulation amplitudes. Some 
of the other fail to undergo the period doubling sequence, 
a feature inhibiting global spread of chaos. 
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