
A LabVIEW-based Accelerator Instrumentation Platform 

W. Blokland 
Fermi National Accelerator Laboratory’ 

P.O. Box 500, Batavia IL 60510 

Abstract 

An overview is given of the developed LabVIEW-based ac- 
celerator instrumentation platform and its applications. 
LabVIEW provides the software basis with its extensive anal- 
ysis library and drivers to a variety of data acquisition hard- 
ware. An in-house developed interface integrates the platform 
into the Fermilab Accelerator Controls Network. Procedures 
have been designed to assist in the development process. The 
wide variety of applications implemented on this platform 
demonstrates its overall usefulness. 

INTR~DIJcII~N 

LabVIEW 

The decision of the Instrumentation Group to use the pro- 
gramming language LabVIEW as the main means to imple- 
ment instrumentation applications is based on its ease of pro- 
gramming, the extensive analysis libraries, and the supported 
interfaces to many instrumentation platforms, e.g., VXI and 
GPIB. At the time, LabVIEW was only available on the 
Macintosh, making this the computer of choice. 

lnstrrument Configuration 

A typical application in the Instrumentation Group per- 
forms data acquisition, data-analysis. and presentation of the 
results under control of a console application or guided by ac- 
celerator events. The data acquisition hardware can be a stand- 
alone device, e.g., a GPIB scope, or a module in a crate, e.g., 
a VME digitizer. Commercially available and LabVIEW sup- 
ported interface cards connect the Macintosh to the device or 
crate. The data analysis is done in LabVIEW which is some- 
times extended with an add-on package. 

Network interface 

To make LabVIEW practical for accelerator instrumentation 
purposes, a communication interface was written according to 
the Accelerator Control Network protocol (Acnet). This inter- 
face enables the control system to read LabVIEW analysis re- 
sults and set variables to control the program flow, see [I]. 
To complete the analysis, some applications need the values 
of accelerator variables such as beam current or bunch inten- 
sity. Instead of requiring a console application under control of 
an operator to set LabVIEW variables to these values, the in- 
terface was expanded to talk, using TCP/IP, to a Vax program 
that has similar access to accelerator data as a console. While 
this is indirect, as opposed to using the Acnet protocol, the 

‘Operated by the LJniversities Research Association Inc., 
under contract with the U.S. Dept. of Energy. 

advantage is that it uses the standard console functions such as 
logging, database, and safety routines, which otherwise would 
have to be reimplemented on the Mac. The new part is fully 
implemented in LabVIEW, as opposed to C, to enable other 
LabVIEW supported computer systems to use this part of the 
interface as well. While implementing the new part in 
LabVIEW results in a slower execution, this does not pose a 
problem. As opposed to the supply part, which is written in 
C, where many requesters for possibly large data sets must be 
quickly serviced, the request part is only a one-to-one link for 
small data sets. 

Besides access by console applications using the Acnet pro- 
tocol, the Mac itself can be controlled by remote control pro- 
grams. Such programs, e.g., Timbuktu which uses the 
TCP/IP or Appletalk protocols, and PlanetX which is an 
XWindows client, are for use by an expert, most often the de- 
veloper, to diagnose the operation or to perform studies. The 
console applications and generic parameter pages remain the 
designated way the operators control and monitor the instru- 
mentation. 

DEVELOPMENT AND MAINTENANCE 

As more people started to use the platform and more appli- 
cations became involved with the daily operations of the accel- 
erator, it became clear that the current informal setup was not 
sufficient to provide a smooth development path to a trusted, 
reliable, and maintainable instrument. A beginning was made 
to formalize the development process to solve the problems re- 
lating to software backup, software installation, communica- 
tion with other groups, documentation, system verification, 
diagnostics, and integration into the control system. The de- 
velopment and maintenance process is separated into phases 
with procedures associated with each phase and each transition. 
There are three phases defined: 

1) Stand-alone phase: The developers are programming and 
configuring the hardware. Initial tests are performed but on 
a stand-alone basis. Only the developers are involved. 

2) Commissioning phase: The instrument is hooked up to the 
control system which now sets and reads out data. Studies 
are done to find bugs, improve performance, and enhance 
capabilities. Operators are involved in a limited way. 

3) Operational phase: The instrument is now part of the con- 
trol system and is used by the operators. The main cmpha- 
sis is on maintaining the operational status of the instru- 
ment. 

An important aspect in designing the procedures was to 
keep them as simple as possible. They should assist the de- 
velopcr and not feel like a bureaucratic hindrance. The proce- 

1527 



dures are represented as simple lists with items to complete. 
These checklists are available for each transition to the next 
phase and each change within a phase. Additional explanations 
are available for people using the list for the first time. See 
figure 1. 

4 
e Installation list 

. 
IiB To-commissiontng 

list 

Minor 1 Major 

than 

Commissioning 
change list 

Operational 
change list 

Figure 1. The development phases. 

To start a project, the developer obtains the project folder 
which contains the lists and the documentation about the 
Acnet interface and Macintosh utilities to be used. As the pro- 
ject progresses, all notes and created documentation should be 
added to the folder. The first list tells which utilities should be 
installed so that every instrumentation computer has the same 
(trusted) utilities and everyone can expect the same tools to be 
available. Because the development process in the stand-alone 
phase is a continuous series of changes and additions, too 
many to document, there is no list for each change but a re- 
quirement to backup the software at least once a week. 

To continue to the commissioning phase, the list for the 
transition must be completed. List items require notifying the 
involved groups, (at least the Operations Group), backing up 
software, and adding an entry in the Instrumentation Book 
(IB). An entry in the IB includes the status of the project, a di- 
agram of the configuration. a description of its operation, the 
table of LabVIEW variables accessible by the control system, 
a description of diagnostic procedures, and operator training 
sheets. The IB is located in the Main Control Room and is in- 
tended for use by the operators. A software tool is available to 
help integrate the application to the control system. It gener- 
ates from the same table that LabVIEW uses to initialize its 
side of the interface, the database file that the control system 
needs to register the variables accessible in LabVIEW. In this 
way, both sides use the same table, the developer is not re- 

quired to know how to write database entry files, and the table 
can be used as a document of the registered variables. Adding 
the Acnet interface to the LabVIEW program typically takes 
less than a day unless an intrinsic control is required using a 
custom-made console application. Often though, there is no 
need for a specific console application and the generic ready-to- 
use parameter page suffices. 

Any major change that the developers make must be docu- 
mented according to the commissioning change list unless the 
change is irrelevant to the operators or programmers of the 
console application. This judgment is left to the developers to 
avoid too much paper work while an error at this stage would 
not halt accelerator operations. Any significant change must 
be noted in the IB and the version number of the software 
must be updated. The version number is also available as a 
LabVIEW variable and can be seen on-line on a console for 
easy reference with an IB entry. 

To bring the system up to operational status, the developer 
must provide the means to rebuild the system from the ground 
up, complete the IB entry, complete the spare parts list, pass 
the system certification test, and notify the Operations liaison. 
The system certification includes a review of the analysis and a 
complete from-the-ground-up software installation on a differ- 
ent computer to prove that, in case the computer fails, it can 
be resurrected on a spare. 

APPLICATIONS 

So far, six projects have been created using the platform. 
All are hooked up by a tokenring card to the control system 
and can be remotely controlled over ethernet. 

Synchrotron Light Monitor 

The transverse image of the beam formed by synchrotron 
radiation is displayed on a Quadra 950. The light is converted 
by a CCD camera to video signals which are read into the Mac 
by a frame grabber card. A stepper motor card interfaces to the 
positioning motors which aligns the camera within the tele- 
scopic system. A GPIB card controls a CAMAC crate which 
has timing and power supply modules. The image is captured 
and analyzed by a LabVIEW add-on package. All hardware and 
software were commercially available and needed only minor 
modification. See [2]. 

Beam Line Tuner 

On injection of the beam in the ring, the turn-by-turn beam 
positions are measured to estimate the initial phase and ampli- 
tude of the betatron oscillation. A console application page re- 
trieves the results and calculates the beam line corrections. The 
Macintosh IIci is hooked up to a VXI crate through the MXI 
interface. The VXI crate contains VXI digitizers, cards for de- 
coding of injection events and beamsync signals, and RF-mul- 
tiplexers to switch between beam position signals. See [3]. 

Samnpkd Bunch Display 

A Quadra 950 controls two GPIB scopes taking samples of 
the proton and pbar bunches in the Tevatron and analyzes their 
beam intensities. Timing signals come from a GPIB con- 

1528 



trolled CAMAC decoder card. A major part of the program is 
the control logic to set the scope and analysis for the various 
states of the accelerator. The intensities are displayed in the lab 
wide status display and used for luminosity calculations. See 
141. 

Ion Profile Monitor 

For both vertical and horizontal planes, a 30 point beam 
profile from micro-channel charge pickups is sampled. All 
20,O turns of the Booster cycle are captured by VME digitiz- 
ers. CAMAC modules provide timing signals and control of 
ths high voltage power supply of the pickups through a GPIB 
interface. The analysis determines the position and emittance 
for each turn. The data, 2.5 Mbytes, can be displayed for any 
turn individually or as a whole cycle, (decimated for display), 
in a color intensity plot. The Quadra 650 takes about I.5 sec- 
onds to retrieve the data and display the results. See [S]. 

Collision Point Monitor 

Each side of the collision region has a horizontal and verti- 
cal pair of beam position pickups. A GPIB multiplexer directs 
the signals from beam position pickup plates to a GPIB 
scope. The LabVIEW program retrieves the data and deter- 
mines the position and time of a proton and pbar bunch to de- 
rive the collision point. The results are accessed through a 
standard parameter page on a control console. 

Fiying Wires 

Transverse beam profiles are obtained by flying wires 
through the beam and digitizing the resulting beam loss inten- 
sities and current wire positions. A Macintosh Quadra 950 
controls the wires’ movement using a Nubus motor controller 
card. In a VME crate, controlled through a MXI interface, digi- 
tizers sample the beam loss signals on each turn of the beam. 
The LabVIEW program reads the data in and analyzes the pro- 
files to determine the emittancc of the beam. Work is in 
progress to speed up analysis and create a console application 
to present the results to the operators. 

EXPERIENCES 

Because LabVIEW is a graphical language, one is saved the 
time normally spent debugging syntax errors. Additional time 
is saved by the availability of many drivers for the data acqui- 
sition hardware. Very little time is spent on the display or 
communication at the Macintosh side due to the built-in 
graphics. If, however, the generic parameter page does not suf- 
fice, a console application must be written, (in C or Fortran), 
which can take extra time. Thus by using available hardware 
and the LabVIEW software, we found that most time, up to 
eighty percent, is spent on programming the analysis routines 
and the control flow of the program. 

Besides the availability of LabVIEW for the Macintosh 
other useful utilities are available as well, e.g., screen snap- 
shot takers, installer programs, and remote control programs. 

A disadvantage of the Macintosh is the lack of a real-time 
kernel. The main factor that alleviates this lack is that our ap- 
plications are geared towards monitoring, not controlling. 

Results are presented to the operators who don’t require a fixed 
time interval in which an answer must be ready. Time-critical 
operations, such as timing the data acquisition, can all be done 
in hardware. The LabVIEW program only checks to see if the 
data acquisition is complete and if the device must be repro- 
grammed to change the measurement setup. It is possible to 
do time-critical operations if one could assure that nothing else 
than the LabVIEW program would be running on the 
Macintosh. However, we use remote control programs like 
Timbuktu and PlanetX. These can be used anytime and inter- 
rupt a time-critical operation. 

We found that system crashes are often due to hardware in- 
compatibilities, e.g., accelerator cards and expansion chassis, 
atid software incompatibilities, e.g., system extensions. The 
solution was to replace or not use the offending parts. Crashes 
due to program errors are normally found and corrected for in 
the stand-alone or commissioning phase. To handle the crashes 
at remote locations, the Mats can be rebooted by cycling the 
power using a remote controlled switch. The most common 
reason to reboot a machine is after an unsuccessful change in 
the LabVIEW program or because an upgrade of a utility 
proved incompatible with the particular Mac. To date the 
longest uninterrupted operation of a Mac was several months. 

The procedures for the development and maintenance pro- 
cess are new and we just started applying them to the projects. 
We expect to make modifications as needed. 

All developers had a favorable impression of the LabVIEW- 
based platform and estimated that it would be much harder and 
more time-consuming to implement a similar application on 
an ASCII language based system. 

ACKNOWLEDGMENTS 

I like to thank the many people in the Instrumentation, 
Controls, and Operations Groups for their advice and help. 

II1 

121 

131 

[41 

(51 

REFERENCES 
W. Blokland, “An Interface From LabVIEW To The 
Accelerator Controls Network”, Proc. of Accelerator Inst. 
Workshop, Berkeley, USA, 1992, pp. 320-329. 
A. A. Hahn and P. Hurh, “Results From An Imaging Beam 
Monitor In The Tevatron Using Synchrotron Light”, 
HEACC’YZ. Hamburg. Germanv. Julv 1992. DO. 248-250. 
W. Blokla&, “’ ” ’ ” “A VXI!LabVIEW-based Beamline Tuner”, 
PAC’93. Washington. 
E. Barsotti, “A longitudinal Bunch Monitoring System using 
LabVIEW and high-speed oscilloscopes”, To be published at 
1994 Accelerator Instrumentation Workshop in Vancouver. 
J. Zagel, “Boosrer Ion Profile Monitor using LabVIEW”, To 
be published at 1994 Accelerator Instrumentation Workshop 
in Vancouver. 

1529 


