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Abstract 

The Advanced Photon Source (APS) will implement both 
global and local beam position feedback systems to stabilize 
the particle and X-ray beams for the storage ring. The global 
feedback system uses 40 BPMs and 40 correctors per plane. 
Singular value decomposition (SVD) of the response matrix is 
used for closed orbit correction. The local feedback system 
uses two X-ray BPMs, two rf BPMs, and the four-magnet 
local bump to control the angle and displacement of the X-ray 
beam from a bending magnet or an insertion device. Both the 
global and local feedback systems are based on digital signal 
processing (DSP) running at 4-kHz sampling rate with a 
proportional, integral, and derivative (PID) control algorithm. 
In this paper, we will discuss resolution of the conflict among 
multiple local feedback systems due to local bump closure 
error and decoupling of the global and local feedback systems 
to maximize correction efficiency. In this scheme, the global 
feedback system absorbs the local bump closure error and the 
local feedback systems compensate for the effect of global 
feedback on the local beamliues. The required data sharing 
between the global and local feedback systems is done 
through the fiber-optically networked reflective memory. 

1. INTRODUCTION 

The Advanced Photon Source (Al%) is one of the third- 
generation syuchrotron light sources which are characterized 
by low emittauce of the charged particle beams and high 
brightness of the photon beams radiated from insertion 
devices. In order to achieve the stringent transverse X-ray 
beam position stability required by the current user commu- 
nity, we are developing an extensive beam position feedback 
systems with the correction bandwidth approaching 100 Hz. 
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The APS storage ring has 360 rf beam position monitors 
(OPMs) and 318 corrector magnets distributed around the 
storage ring, miniature BPMs for insertion device beamlines, 
aud photon beam position monitors in the front end of X-ray 
beamlines for global and local orbit correction. The real-time 
(AC) feedback systems, which are the main focus of this 
work, will use a subset of these to counteract the effect of 
various vibration sources, including the ground vibration, 
mechanical vibration of the accelerator suhcomponents, 
thermal effect, and so forth 

The feedback systems can be largely divided into the 
global and local feedback systems according to the scope of 
correction. The global feedback system uses 40 rf BPMs and 
40 corrector magnets distributed equally in 40 sectors. The 
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primary function is to stabilize the selected perturbation 
modes of the global orbit. The local feedback systems, on the 
other hand, stabilize the source regions of the X-ray becams 
locally for angle and displacement. 

An ideal local feedback system would not affect the rest of 
the closed orbit including other local feedback systems. In 
reality, the global and local feedback systems constantly 
interact with one another. The effect of global orbit feedback 
unavoidably interferes with the local feedback. On the other 
hand, the bump closure error in the local feedback due to 
bump coefficient error, magnet field error, eddy current effect, 
etc., causes global orbit perturbation and affects other local 
feedback systems. If this interaction is too strong, the 
feedback systems can become ineffective, oscillatory, or even 
unstable. In order to minimize such effects and maximize the 
feedback efficiency, it is necessary to decouple the global and 
local feedback systems. The local feedback compensates for 
the effect of the global feedback and the global feedback 
reduces the effect of local bump closure error. 

In this work, we will investigate the effect of coupling 
among global and multiple local feedback systems and how to 
resolve it through decoupling. The remainder of this paper 
will be a theoretical review of the dynamics of global and 
local feedback systems in Section 2, and analysis of the APS 
feedback systems in Section 3. 

2. TIUSKY 

2.L Feedback System Llescription 

Let us consider a feedback system comprised of global and 
non-overlapping local feedback systems. In the following 
discussion, the subscripts g and I denote global and local 
feedback, respectively, unless noted otherwise. 

The global feedback uses M BPMs to obtain the orbit and 
N correctors to reduce perturbation. The global response 
matrix R, defined as the beam motion at BPM locations per 
unit kick by corrector magnets, is then an MxN matrix. 

In case the local feedback system controls both the angle 
and displacement of the photon beam, at least two monitors 
and four correctors are necessary per beamline. In this case 
the local bump can be decomposed into two independent 
three-magnet local bumps a and b as shown in Fig. 1. The 
angle ‘and position of the photon beam can be controlled by 
adjusting strengths of the a and b bumps. Traditionally two 
X-ray BPMs arc used to measure the photon beam positions, 
but two rf BPMs inside the local bump may also be used. We 
further assume that the none of the BPMs used by the local 
feedback systems is used by the global feedback. In any case, 
the local response matrix R, can be reduced to a 2x2 matrix 
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relating the angle and displacement of the photon beam and 
the two bump strengths. 

X-ray BPM 

q : Bump magnets 
__ : Closed orbit with bump magnets ofl 
- : New closed orbit with bump magnets on 

- : X-ray radiation 

Fig. 1: Schematic of the local feedback system. 

2.2 Inversion of the Response Matrix 

The response matrix R combines the global response 
matrix R,, collective response matrices R, for L local 
feedback systems, the global-to-local response matrix R,,, and 
the local-to-global response matrix R,, as shown in Fig. 2. R,, 
represents the effect of global correctors on the local beam 
positions, and R,, represents the effect of local bump closure 
error on the global orbit. The shaded area of R in Fig. 3 is due 
to the local bump closure error. 

The inverse response matrix Ring is the matrix used to 
obtain the corrector strength vector A0 to correct the orbit 
error Ay, that is, 

A0 = Rinv * Ay. (1) 

Like the response matrix R, the inverse response matrix Rinv is 
a composition of three component matrices, Ryinv, Rlin~ and 
Rinv lg as shown in Fig. 2. In this work, the global inverse 
ma&ix Ryinv was obtained using the singular value decompo- 
sition (SW)) of the response matrix.[1,2,5,6] The details of 
the SVD technique can be found in the references and will not 
be discussed in this paper. The local inverse matrix R,inv is 
obtained by inverting the 2x2 local response matrices. 

Response Matrix R Inverse Math Rinv 

Rg Global Response Matrix 
Rginv Global inverse Matrix 
Rig Global-to-Local Response Matrix 
Rgl Local-to-Global Response Matrix 
n 2 x 2 Local Response Matrix 
n 2 x 2 Local Inverse Matrix 

Fig. 2: Response matrix and its inverse for the unified 
feedback system. 

The remaining component matrix Rlnv,lg is determined such 
that the effect of the global correctors on the local feedback is 
canceled by considering the global and local feedback systems 
as a single, unified feedback system. This can be done by 
setting 

Rinv,lg = -Rli,;RIB.Rpjn,. (2) 

The physical interpretation of Eq. (2) can be given as follows. 
Rginv is the response of the global correctors to global orbit 
perturbation, R,, is the local orbit perturbation due to global 
correctors, and Rlinv is the response of the local correctors to 
local orbit perturbation. The matrix product RLinv.Rlg.Rginv is 
then the response of the local correctors to global orbit 
perturbation and Rinv,lg in Eq. (2) compensates for the action 
of the global feedback on the local orbits, resulting in 
maximum orbit correction efficiency. 

2.3 Feedback System Dynamics 

The schematic diagram of the feedback system is shown in 
Fig. 3. We assume a digital feedback system and will analyze 
it using the technique of Z-transfonn.[4] The sampling time is 
T and the sampling frequency F, is equal to l/T. {sn) and 
{y,) are the discrete sequences of vectors representing the 
reference and measured orbits. The gain matrix G includes 
the feedback controller and a bandwidth-limiting filter, and 
the matrix H represents the BPM bandwidth. The external 
perturbation is given by ( w,) . . 

% &nv ---) R 

I 

Fig. 3: The SCheImiC diagram for the global beam position 
feedback system. 

The difference equation describing the response of the 
feedback system in Fig. 3 is given by 

Yn+l = H*IR.Rirn*G* (sn-Yo) + Wn+l}. (3) 

Applying the Z-transform to Eq. (3), we obtain 

Y(z) = 
1 

- I- WHcz) 3(z) + F(z).W(z) 

where 

F(z) = 1 
1 + H(Z).R*Ri,,*G(z)z’ H(z). 

(4) 

Y(z) is the Z-transform of (y,), W(z) is the Z-transform of 
{w,) and so forth. The expression l/( ..) denotes the inverse 
matrix. The matrix F(z) is the noise-filter matrix and with the 
substitution z = exp(-iwT), we can obtain the frequency 
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response of the feedback system. The last term in Eq. (4) closure error when the particle beam is at a significant 
represents the residue of the perturbation in the orbit with distance from the vacuum chamber center. The magnet field 
feedback. error due to calibration error and saturation adds to this effect. 

1Jsing Eq. (2) and assuming R.Rliny= 1, it GUI be shown 
that the matrix product R.R,,, is given by 

R.Rinv = RB.Rginv ~ 1, (6) 

in the ideal case of no local bump closure error. The operator 
0 combines two matrices as depicted in Fig. 4. 

Figure 5 shows simulated results comparing the cases 
when the global and local feedback systems are coupled 
(Rinvtlg = 0) and d~oupld (Rinv,lg = -R,inJR,g.Rpi,,), It also 
shows the attenuation of noise by the feedback system. 
Random field error less than 2% and orbit deviation less than 
3 mm were assumed with the vacuum chamber eddy current 
taken into account. The correction efficiency is shown in 
terms of the local corrector load (mrad/mm) necessary to 
correct a given orbit perturbation of global SVD eigenmodes. 
Decoupling the global and local feedback systems results in 
significant improvement in the correction efficiency beyond 
10 Hz. 

Fig. 4: The matrix combination operator @. 

Now, putting 

G(z) = G,(z) 1, 0 G,(z) l1 and H(z) = H,(z) 1, 8 H,(z) 1, (7) 

we obtain 

F(z) = UF,(z)JJT 63 Fl(z), (8) 

where U is the unitary global BPM transform matrix derived 
from SVD, and F,(z) and F,(z) are diagonal. Equation (8) 
indicates that there exists a coordinate transformation that 
decouples the feedback channels, and single-channel feedback 
theory can be applied to each channel. 

Using the relation U.LJT = UTU = 1, WC obtain from Eqs. 
(41 and (5) the diagonal elements of F,(z) as 

H,(z) 
1 + lI,(~)G,(z)z-’ 

coupled modes 

decoupled modes 

and similarly for F,(z). The noise filter matrix for the BPMs 
can bc obtained from Eqs. (8) and (9). The expression for the 
coupled modes is identical to that of a single-channel feedback 
system.[3] The PID controller function G(z) is given by 

KI G(z) = KP + -7 + K,(l - z-l), 
l-z (10) 

where Kr, Kr, and Ko are the proportional, integral, and 
derivative controller gains, respectively. When Kt is finite, 
the open loop DC gain is infinite, and therefore, the long-term 
drift can be completely corrected. 

3. ANALYSIS OF THE APS FEEDBACK SYSTEM 

In this section, WC will discuss the results of simulation on 
the APS beam position feedback system with 20 local 
feedback systems. Due to the relatively thick (l/2”) aluminum 
vacuum chamber at the location of local corrector magnets, a 
strong eddy current is induced in the vacuum chamber. This 
causes attenuation and phase delay of the applied magnetic 
field and generates a strong quadrupole magnetic field (13% 
per cm at 2OlIz) inside the chamber. This leads to local bump 
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Fig. 5: Improvement of local orbit correction efficiency for the 
decoupled feedback system in correcting global SVD 
eigenmodes. Random field error less than 2% and orbit 
deviation less than 3 mm were assumed with the vacuum 
chamber eddy current taken into account. 
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