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Abstract 

We formulate the multibunch feedback problem as a stan- 
dard control-systems design problem and solve it using 
Linear Quadratic Gaussian (LQG) regulator theory. Use 
of a specific optimality criterion allows quantitative eval- 
uation of different controllers and leads to the design of 
optimal LQG controllers. Computer simulations are used 
to show that, as compared to the existing Finite Impulse 
Response (FIR) control, LQG control can provide the same 
closed-loop damping for less peak power, thus making 
more effective use of limited kicker power. Furthermore, 
LQG control enables us to use more power to provide bet- 
ter damping without the problem of driving instabilities 
with higher loop gains. The code for the LQG filters dc 
scribed has been written for the Quick prototype installed 
at ALS. 

1 INTRODUCTION 

The problem of designing the controller (filtering alge 
rithm) for the longitudinal feedback system is basically a 
regzllator problem. The regulator problem has been stud- 
ied extensively in control theory, and there are many tech- 
niques available to solve it. This paper will compare the 
performances of the existing FIR filter-based control tech- 
nique to that of the LQG filter-based technique. One of 
the distinguishing features of LQG design is the use of a 
specific optimality criterion. This is in contrast to the FIR- 
based technique, which is based on an adhoc discrete-time 
approximation of a differentiator [1,2]. 

In the process of damping synchrot,ron oscillations, mea- 
surements of the beam phase are taken at discrete times 
and the feedback correction signals are applied at discrete 
times. Therefore, our analysis will be carried out using 
discrete-time control formalism. We will also use state- 
space notation in our description of the plant and con- 
troller [3,4]. Given a system described by state-space ma- 
trices {A, B, C, D}, the transfer function is obtained by 

H(z) = C(zl- A)-‘I3 + D . (1) 

2 LINEAR QUADRATIC GAUSSIAN 
REGULATOR THEORY 

Figure 1 shows a block diagram of the LQG regulator prob- 
lem. A precise statement of the problem follows. Given a 
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Figure 1. Block diagram of the LQG regulat,or problem. 

linear model of the plant P, described by state matrices 
t-4 B, C, W (D = 01, 

z(k + 1) = As(k) + Bu(k) + w(k) 

y(k) = Ccc(k) + v(k) . (2) 

where z is the plant state (energy and phase), u is the 
control input (kicker signal), y is the measured regulated 
output (phase), and w and v are process and measurement 
noises, respectively, both of which are assumed to be un- 
correlated white noises with covariance matrices W and 
V. We would like to find a controller H 1qgw described 

by (4, Bc, Cc, &I, (& = O), 

4~ + 1) = A, zc(k) + Bc y(k) 

u(k) = CcG(k) , (3) 

which will minimize the cost functional (or optimality cri- 
terion) 

Jb 2 22: E [cc(k)“CTQCzc(k) $- u(k)7‘Ru(k)] , (4) 

where E denotes the expectation operator. Notice that 
the quantity Cz(lc) is actually the noiseless plant output. 
Thus, the cost functional Jlqg can be interpreted as t~he 
weighted sum of the steady state rms excursion of the regu- 
lated plant output Cz(Ic) and the rms actuator effort u(k). 
Here, R and Q are symmetric, positive definite weighting 
matrices that allow us to t,rade off between steady state 
rms output excursions and rms actuator effort. 

The solution to the LQG regulator problem is well 
known [3,4,5]. We state the results here without proof: 

{A,, &, Cc, &) = {A - BK,t - Lopt C, Lopt, K,pt, 0) > 
(5) 

where Lopt is the solution to (Kalman filter, Kalman 1960) 

L Opt = .4PCT(v+CPC7’)-’ , (6) 

P = APAT + W - ,&(V + CPCT)L;p, , (7) 
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and Kept is the solution to (Linear Quadratic Regulator, 
Bellman 1957) 

K opt = (Rf BTSB)-lBTSA , (8) 

S = ATSA + CTQC - K$,(R + BTSB)K,,t . (9) 

The transfer function of the optimal LQG controller 
Hlqg(z) can be obtained by applying Eq. (1) to 

CA,, B,, Cc, DC) above. The equations for P and S are 
matrix quadratic (R.iccati) equations. Despite their rather 
intimidating appearance, they are readily solved using nu- 
merical software design tools [7]. At this point, we stress 
that this controller is “optimal” in the following very pre- 
cise sense: it minimizes the cost functional Jlqg. This does 
not necessarily make it the “best” controller. 

3 COMPARISON WITH A 
SINGLE-BUNCH BEAM 

We now compare the performance of LQG feedback versus 
FIR feedback on a computer simulation of a single-bunch 
beam. Initially, these simulations will be without noise; 
performance in the presence of noise will be discussed in 
the following section. 

The “plant” which we are trying to regulate is the 
discrete-time linear model of the longitudinal oscillations 
of a single-bunch beam, with a dc gain of 1 (0 dB), a peak 
response of 33 dB, a Q of 50, and a synchrotron frequency 
of 10 KHz, sampled at 20 ps. These parameters model the 
existing conditions at ALS. Applying Eq. 1 to the state 
space model, Eq. (2), yields the following transfer function: 

P(z) = 0.6854~-~+0.6794~-~ 
l-0.6104~'$0.9752~2 . (10) 

Figure 2(a) shows the frequency response of the beam and 
Figure Z(b) shows its open-loop impulse response. 

The FIR controller is an empirically designed 4-Tap 
Linear Phase FIR bandpass filter with zero dc response, 
which approximates a diffentiator. Its gain parameter was 
adjust,ed to give the smallest peak gain in the closed-loop 
response, yielding; 

Hfrr(Z) = -0.2002-' +o.oooz-2 + 0.2002-3 +0.0002-* . 

An LQG controller (LQGl) can be designed to match 
the performance of the FIR controller by choosing appro- 
priat~e values for the design parameters, Q, R, V, and W 
73,4]. The values chosen for W and V are arbitrary, since 
precise measurements of process and measurement noise 
variances have not been made yet. However, these num- 
bers still lead to a good design, as we shall see. The dis- 
cretized transfer function calculated by applying Eq. (1) 
to Eqs. (5) through (13) is: 

Nlqgl(Z) = 
-0.3513z-’ - o.o5OOz-2 

1 + 0.50112~’ + 0.0348~-~ ’ (12) 

301’ ’ ’ ’ :i ’ ’ ’ ’ :: (a\ 

1.0 

2 

E 

0.5 

0 
% 
.g -0.5 

-1 .o 

5 0.6 

5 ‘5 
q 

0.3 

- .- a- lJa 0 
2 E 

g -0.3 
- 

6-94 
771oA2 

0 4 8 12 16 20 
Frequency (KHz) 

0 0.1 0.2 0.3 0.4 
Time (ms) 

Figure 2. ( a) Frequency responses, (b) impulse responses, 
and (c) actuator efforts. Open-loop (dotted), LQGl 
(dashed), LQG2 (dash-dot), and FIR (solid). 

It was pointed out in Reference [2] that there is a limit 
to the damping that can be achieved using the FIR con- 
trol described above: further increase in the FIR’s gain 
would drive new instabilities. A second LQG controller 
(LQG2) can be designed that improves the damping with- 
out causing instabilities. By swapping the values of Q and 
R, above, while keeping W and V the same, Eqs. (5) to 
(13) give us a new optimal controller that uses more actu- 
ator effort, but achieves better damping: 

fflqgZ(“) = 
-0.6828z-'-0.4524~-~ 

1 + 1.0411~-~ +0.3151z-2 (13) 

Notice that both LQG controllers have nonzero dc re- 
sponse [1,2], so they require a simple modification before 
they can be used in practice: a dc notch filter (for exam- 
ple, D(z) = (1 - z-‘)/(l - 0.9z-l)) must be added on in 
series. We will return to this point in Section 4. 

Figure 2(a) shows the closed-loop frequency responses 
with the three controllers. The peak of the resonance 
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has been reduced from 33 dB to about 9 dB by both 
the FIR and LQGl, except that the FIR gives a broader 
“plateau.” ’ The LQG2 flattens the peak past the FIR 
limit by another 5dB-almost a factor of 2. 

Figure 2(b) shows the closed-loop impulse responses. 
The responses with FIR and LQGl are remarkably similar, 
as expected. With LQG2, the system is almost completely 
damped in a single cycle. 

Figure 2(c) shows the actuator efforts required to bring 
the system to rest. The peak actuator effort of approxi- 
mately 0.4 units used by FIR is reduced to 0.3 units by 
LQGl. Thus, LQGl gives the same performance as FIR, 
but for less peak power (and lower rms power, of course). 
For LQG2, however, we see that the improvement in damp- 
ing comes at a cost: the peak actuator effort has almost 
doubled to 0.6 units. 

Figure 3 shows the closed-loop frequency responses with 
the FIR? LQGI, and LQG2 in a bunch-by-bunch imple- 
mentation on a simple simulation of a four-bunch beam 
[5,6]. The bunches (modeled as masses, springs, and 
dampers) are coupled by bidirectional, nearest-neighbor 
coupling at 5% the strengt,h of the restoring force on each 
individual bunch. but the first bunch is not coupled to the 
last. The frequency responses were taken by applying an 
excitation to bunch 1 and measuring its phase. Notice the 
multiple peaks due to the coupling. The plots show that 
the performance of the controllers on a weakly coupled 
beam is almost identical to the single-bunch case. 
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Figure 3. Frequency responses for four-bunch beam. 

4 PERFORMANCE WITH NOISE 

We now return to the single-bunch senario and quantita- 
tively evaluate the above three controllers in the presence 
of noise. Once a controller has been specified, it is possible 
to actually calczllate the steady-st,ate rms output excur- 
sions and the rms actuator effort for the closed-loop sys- 
tem, by solving an appropriate Lyapunov equation [3,4]. 
As the Q/R ratio is varied from zero to infinity, the fam- 
ily of optimal controllers sweeps out the trade-off curve 

‘For larger gains, the edges of this plateau would rise, correspond- 
ing to driving new instabilities [2]. 

shown in Figure 4. Points above the curve correspond to 
suboptimal and hence achievable specifications; points be- 
low it are unachievable, since they would have either lower 
rms excursions or lower rms actuator effort than the cor- 
responding optimal controller. 
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Figure 4. Trade-off curves: LQG (solid), modified LQG 
(dashed). 

For any cont.roller, this curve t,ells us exactly how close 
to optimal we are operating, in the LQG sense: since t,he 
FIR filter lies close to the “knee” of t,he curve, it is a rea- 
sonable operating point. The trade-off curve for the family 
of modified LQG controllers, O(z)Hlqg(z), shows that, the 
loss in performance due to this modification is minimal. 

In summary, the formulation of the longitudinal feed- 
back problem as an LQG regulator problem allowed us 
to design better, more efficient controllers. The precise 
optimality criterion allowed us to evaluate the trade offs 
between different controllers quantitatively. The ideas 
presented here will be implemented this summer on the 
DSP-based bunch-by-bunch longitudinal feedback system 
at ALS [8]. 
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