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Abstract

To minimize the ohmic power losses, it is necessary to max-
1mize the transverse shunt resistance, Rgnunt. The cell of
a rod-type RFQ is modelled by a parallel two-rod trans-
mission line supported above a parallel ground conductor
by two legs. Due to coupling between neighbouring sup-
ports, the loading impedance is modified depending on the
leg spacing. The shunt resistance is improved by reducing
the cell length and increasing the leg spacing, and maxi-
mized when the legs are equally spaced. However, this is
also the condition for strong excitation of the unwanted
‘even-mode’ in which a potential difference exists between
the ends of the rods mid-plane and the grounding conduc-
tor or tank. Once the legs of the support are longitudi-
nally separated, some even-mode excitation of the struc-
ture is inevitable because some current must be injected
into the ground conductor; the even-mode excitation rises
as leg separation increases. Further, when the desired odd-
mode voltage is symmetric about the cell centre, the even-
mode voltage is anti-symmetric This paper is a very much
abridged version of two internal design notes(3],[4].

1 INTRODUCTION

We divide the RFQ into series connected unit cells. Rghynt
is the cell-averaged inter-rod-voltage squared, divided by
cell power loss. QOur basic purpose will be to optimize
Rshunt as a function of cell length !. The support struc-
ture is, itself, an issue. How does one compare cases with
different separation s between the two legs of the support?
How does one assess the relative electrical coupling be-
tween the supports of neighbouring cells? Our strategy has
been to model the support by a parallel plate transmission
line, and for given transverse dimensions and resonance
frequency of the structure let the model itself determine
the leg separation s as a function of the cell length {. This
is discussed in sections 2 and 4.

In the naive model[1], a plane passing through the cen-
tre line between the two rods (and perpendicular to the
plane containing them) is a ground plane. This aspect of
the model does not agree with MAFIA code calculations
reported by Andreev[2] and has prompted us to consider a
model in which the structure is excited in a combination of
‘odd’” and ‘even’ transmission line modes. This is discussed
in section 3.

2 NAIVE MODEL

The unit cell (see Fig.1) consists of a length ! of two-rod
transmission line, characteristic impedance Z;, bridged at
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Figure 1: Sketch of RFQ unit cell model

its centre by a support of lumped mmpedance Z;. The
line terminations are taken to be open-circuit so that the
cell may function equally well as an end-cell or one with
left and right neighbours. The condition for resonance
is tan{B!/2) = +jZo/2Zp where 8 = w/c is the phase
constant of the line.

2.1 Transverse shunt resistance

The power dissipated is the sum of ohmic losses in the rods
and in the support. The rod current I(z) and voltage V (z)
distributions, as a function of position z, come from solv-
ing the telegraphists equations, assuming a time depen-
dence exp(+jwt). The current changes step-wise across
the support at location z = 0 by an amount V(0)/Zr.
Hutcheon[1] modelled the support as a section of parallel
plate transmission line. The current flow is confined to
the interior (i.e. facing) surfaces of the two plates. For a
given width and separation of the plates, their height A is
determined from the resonance condition and so cannot be
held constant while cell-length is varied.
The transverse shunt resistance per unit length 1s

Runune = Z2[1 + sineBl)/{R2E[1 — sincBl] + Polares} (1)
Potates = RV [sin(81/2)/ cos Bh)[1 + sinc Bk cos 3h}(4h/1) .

surf

Here R4 and Rs\l;’_ges are the resistances per unit length
(for given diameter of rods, and width of plates). Rgpunt (!)
has minimaat 8l = 0, 7 and is a rather skewed bell-shaped
curve between. Hence there is a maximum shunt resis-
tance. However, it may occur that the optimum cell length
is impractically small. Further, there are three deficiencies
of the model which make this result rather unrealistic. (i)
We assumed negligible separation of the support legs. (ii)
We have not held the support height constant. (i) We
have ignored coupling between supports of adjacent cells.

3 EVEN AND ODD MODES OF LINE

In the odd-mode excitation, there are positive and negative
charges on the rods, equal and opposite currents flowing
in the rods, and no free charges on the ground conductor.



In the even-mode excitation, there are equal positive (say)
charges on both rods and a free negative charge on the
ground conductor; there are equal currents flowing in the
same sense in both rods and an oppositely directed cur-
rent flowing on the ground conductor. In the even-mode
excitation, the mid-plane between the rods is not a ground
plane, and there exists a potential difference between the
centre line and the grounded vacuum tank.

3.1 Symbol definitions

We define odd-mode voltage V, to be the electric field
integral for a path perpendicular to the two rods and in
the plane containing the rods. The V; path starts on one
rod and terminates at the other. We shall call the odd-
mode current [.

We define even-mode voltage 1y to be the field integral
for a path perpendicular to the ground conductor and in
the mid-plane between the rods. The V, path starts on the
ground conductor and terminates at the plane containing
the ¥, path. We shall denote the even mode current J.

3.2 Telegraphists equations

It can be shown that V, couples only to I, and that V,

couples only to J, and the relations between them are:
Ve /0z =
oVy/dz =

~L.81/8t
—L,8T/dt

81/9z = —C,0V, /0t (2)
8J/0z = —C,8V, /0t .(3)

L, and C, are the mutual inductance and capacitance per
unit length between the two rods. L, and Cy are the
distributed reactances between the ground conductor and
the plane containing the rods.

3.3
The unit-cell support is composed of two legs. The left
leg is connected between the left rod and the ground con-
ductor. The right leg is connected between the right rod
and the ground conductor. Left and right refer to view-
ing along the rods in the direction of positive z. We take
the cell to extend between z = £{/2, and the legs of the
support to be symmetrically placed at z = +s/2. Sup-
pose, that a current K flows off the left rod, down one
leg, and then flows up the opposite leg of the support and
on to the right rod. We suppose the whole support has
impedance Z;, and that each leg contributes Zp /2. We
assume that this impedance is independent of the separa-
tion of the two legs and is independent of the presence or
absence of neighbouring unit cells. Each leg is considered
to be connected between a single rod and the centre-line
of the ground conductor. The current down the left leg

s K = (2/Z0)(V, + V2 /2) imaya’ The current down
the right leg is —Krignhe = (2/ZL)(Vy — V2 /2) imtsf2 The
negative sign in front of Kegne derives from our choice that
the current flows up the right leg.

Currents in legs of support

3.4 Fundamental symmetries of V; and V

If Kjere and Kyigne are not equal, then the currents flowing
across each end of the unit cell are unequal, and the cell

ceases to be a repeatable unit. Hence the currents Ko
and Kyighe are equal, in which case

Val24 V)|, = V/2-Valloyye - ()

From this it follows that if V; is symmetric about the cen-
tre of the unit cell, then V, must be anti-symmetric.

3.5
We take the boundary condition for the odd-mode of zero
current (/) and maximum voltage (V) at the ends of the
unit cell. The distribution in the interior of the cell is then
found by simultaneously integrating equations (2) from the
cell ends towards the cell centre. The voltage distribution
V;(z) is symmetric by choice. Integrating across the cur-
rent discontinuities, that is rightwards across z = —s/2 or
leftwards across z = +s/2 gives two expressions for the
current distribution I(z) in the region —s/2 < z < +s/2 .
Their equality implies the condition:

tan[3(l — 5)/2) + tan[3s/2] =

Odd-mode with ‘open’-terminations

25 (1, Vl(=s/2) = Vy(+s/) -
7012 T Vi(=s/2) + Val+s/2) |

Equation (5) gives the support impedance necessary for

resonance. Here ZF = /L /Cy .

3.6 Even-mode with ‘open’-terminations

To evaluate the resonance condition (5) we need an explicit
expression for the even-mode voltage ¥y, and mode current
J . Because we have stipulated I{£{/2} = 0, it follows
that J(£{/2) = 0 also. Thus the cell-ends are ‘open’-
terminations for the even-mode.

We already know the voltage distribution Vi (z} to be
anti-symmetric. To find the current J we integrate (3)
outwards from the centre (z = 0) across the discontinu-
ities at —s/2 or +s/2 and towards the cell ends. Now,
J(#1/2) = 0, and from this equality it follows that

Vi(=5/2) = Vi (+s/2))/[Ve(=s/2) + Val+s/2)] =

— Z¥/{22¥ + 3Zovan[B(1 — 8)/2] — 720/ tan(Bs/2)} . (6)

The expression on the left hand side characterizes the
relative importance of the even and odd mode contribu-
tions. For reasons of beam dynamics, it is desirable to
suppress the even-mode; and to accomplish this we must
make the right hand side as small as possible. The most di-
rect method is to reduce the leg separation to zero (s — 0),
in which case the even-mode excitation is zero irrespective
of the magnitudes of Z and 2§ = /L, /Cy.

(‘3: 7

We may combine equations (5) and (6} to determine the
resonance condition :

tan[3(l ~ s)/2] + tan[3s/2] =

z [, 27!
1270 220 & ;21 tanB(l — s)/2] — 321/ tan(Bs/2) |

It is worth noting that Zp pure imaginary is a solution of

Unit cell resonance condition

this equation.
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4 FULL MODEL

We introduce a very crude model for the coupling of the
supports of nearest neighbour cells. However, it does in-
clude the features: (i) coupling increases as cell size is re-
duced, and {ii) the desired load impedance (for resonance)
can be obtained without varying the height of the support.
We model the support as parallel plates, but allow current
flows on both faces of the plates; transmission lines are
formed (i) between the interior faces of the plates of a sin-
gle support, and (ii) between the exterior faces of the plates
of adjacent supports. This has the effect of replacing the
single loading impedance Zy, by two parallel impedances
whose complementary values depend on the leg separation
s. Thus, by varying s we may obtain {almost) any desired
load impedance, while keeping the support height A con-
stant. This model becomes quite accurate in two extreme
cases: (i) very long cells and (ii) very short unit cells.

4.1 Current and voltage distribution

The unit cell has support legs placed at +s/2 . We shall
assume that the even-mode excitation is small and can be
ignored. For simplicity, we suppose that current flow along
the ground conductor is piece-wise constant. Let us sup-
pose a current K, flows on the inner faces of the legs,
and a current K., flows on the outer faces of the legs,
and let K denote their sum. Let the impedance of the
current path between the interior faces of the legs of a sin-
gle support be 7, and the impedance of the path between
the exterior faces of nearest neighbour legs of two adjacent
supports be Zy. We take the cell ends to have voltage V,
maxima, and odd-mode current 7 zero. The step changes
in current are Al{—s/2) = K/2 and AI(+s/2) = K/2
where K =V, (&s/2)[}/Z + 1/Zn]).

4.2

The resonance condition vields the requirement:

Resonance condition

tan[3(1 — 5)/2] + tan[Bs/2} = J(Zo/D)[1/ZL + 1/ZM] . (7)

Now, for parallel plate supports Zy and Zas of height h,
width w, and respective plate separations s and [ — s,

1+1 _ w {
Zy, 4y

~ jntan(Bh) % s(l —s) ®)
For fixed resonance angular frequency w, and fixed sup-
port height h, equations (7, 8) may be combined to give a
transcendental equation for the leg separation s.

In general, as the cell length ! is reduced, so the total
loading impedance Zroy = (Zr x Zm)/(ZL + Zar) must
increase to maintain resonance. Now, Z1o 15 maximized
when Zp = Zar . Hence it follows that as ! decreases, so
the ratio s/I increases towards the limit value of s/l = 1/2.
The limiting cell length satisfies the condition:

(Zo/m)(w/l) . (9)

Beyond this value, ! cannot be further reduced except by
modifying the support dimensions & and w . Equation (9)

tan(Bl/4) x tan(Bh) =

is also the condition for minimizing the impedance Zy and
thereby maximizing the current Kex: flowing across the
ends of the cell; which in turn implies the strongest possible
excitation of the undesired even-mode. Here n = \//—JF

4.3 Transverse shunt resistance

To calculate the total power loss, we should sum the even
and odd mode contributions. However, we shall consider
only the odd-mode, and so shall give an approximate result
for the transverse shunt resistance Hghyne =

Z2{(1 = /)1 4 sincB(l — 8)] + (/D1 + sincBs](Vi /Vo)*]}
Pmds(l; 3) + Pp]atcs(l‘s)

(10)
where the rod and support contributions are

Prods = R;:ffs {(1 ~ /D[ ~sincB(l - )]+ (/D01 - sinc,@a](VllV())?}

sin[3(1 ~ 3)/2) + (V1 /Vp) sin s/2]1°
Pplates(‘»’)z‘lRf‘lld,:cs[ (8¢ 32+ (V1/Vo)s [Bs/ ]} %

cos(dh)

{6 (-3) » () s 1+ 26207}

and the voltage ratio is Vi /Vo = cos[8(l — 8)/2]/ cos[Bs/2].

4.4 Properties of shunt resistance

Usually there will be a region of Al values where the shunt
resistance rises as 1/1%2 . At the same time, the ratio s/!
rises so that one goes from the case of (i) long cells, sup-
ports far apart and legs very closely spaced; toward the
case of (ii) short cells and leg spacing roughly one half the
support spacing. Eventually, the limiting condition (9)
will be achieved; when s = !/2 we find V5 = V7 and the
shunt resistance reaches the maximum value

(1 + sinc(Bl/2)] 22

Ravne & Brodetl  Sinc(B1/2)] + Pomes

(11)

. 2
Pptates = 4RP21 [%é%%] [t + 2(h/1)(1 + sincBhcos Bh)] .

5 CONCLUSION

The transverse shunt resistance of a rod-type RFQ can
be increased by reducing the cell length. This implies in-
creasing the spacing of the two legs comprising the unit cell
support. However, this is also the condition for increasing
the current flows along the ground conductor; and thereby
causing strong excitation of the unwanted even-mode.
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