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Abstract 
A generic, adaptable Microsoft EXCEL program to 

simulate molecular flow in beam line vacuum systems 
is introduced. Modeling using finite-element 
approximation of the governing differential equation is 
discussed, as well as error estimation and program 
capabilities. The ease of use and flexibility of the 
spreadsheet-based program is demonstrated. PEP-II 
vacuum system models are reviewed and compared 
with analytical models. 

N-R~DUCTI~N 

Vacuum systems for particle-beam accelerators, 
storage rings, and synchrotron light sources are 
characterized by long tubes of variable conductance 
and gas desorption rate, with both lumped and 
distributed pumping. Because of ever more demanding 
requirements for beam lifetime and radiation 
background, the pressure profiles and expected 
performance of these vacuum systems must be well 
understood. 

To adequately characterize such complex vacuum 
systems, all variables must be included in a model. 
However, since these variables do, indeed, vary, the 
resulting piecewise continuous system cannot be 
modeled analytically. An alternative solution method 
involves approximating the system as the sum of a 
series of smaller subsystems. One such modeling 
method is finite-element analysis (FEA). This is a 
discretization process whereby a piecewise-continuous 
problem is divided into discrete, linearly-varying 
pieces, or “finite elements.” 

DERIVATION OF SYSTEM OF EQUATIONS 

The finite-element discretization method @EM) for 
molecular flow is derived from the second-order 
differential equation which describes such flow: 

$ c(x)$f [ 1 =f(xL (1) 

where c is the specific conductance of the vacuum 
chamber (L-cm/s), P is the pressure (torr), and f is the 
gas-production rate per length of chamber (torr-l/s-cmj. 
Equation (1) is the “strong form” of the descriptive 
equation in that it describes the system at every point. 
Alternatively, the “weak form” describes the behavior 
of the system as a whole, including both the domain 
and boundaries [l]: 
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Here, P* is ahogous to “Artual work” in the structural 
mechanics realm, 42 signifies a constant gas flow out 
of the system, and s3 is a pressure-dependent pumping 
speed at the system boundary. The domain integrals are 
evaluated over the domain C?, while the boundary 
integrals are evaluated over their applicable boundaries, 
I-2, and F3. 

To approximate the weak form equation, the 
integrals over the entire domain are transformed into 
discrete integrals over individual finite elements, then 
the element integrals are summed over the domain. 
Finally, the integrals over each finite element are 
approximated using the element’s shape function. The 
shape function describes the assumed linear variation of 
the pressure over the element with respect to the edges, 
or nodes of the element. The resultant equation is a 
matrix equation, with 2 x 2 matrices representing the 
element: 

$$l :I{;]+g[: i]{Ej 
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Each element matrix equation is then assembled into an 
overall stiffness matrix and force vector. These have a 
rank equal to the number of nodes in the model and 
contain all element connectivity, gas loads, and 
pumping. The global matrix equation: [K]*(P) = (F) 
can then be solved for the pressure vector (P). 

THE VACPAC FEM PROGRAM 

The finite-element formulation described above 
produces a system of equations which approximate the 
vacuum system being modeled. This method has been 
used in the program called VACPAC. It is based on the 
spreadsheet program EXCEL, from Microsoft 
Corporation, Redmond, WA, USA, which provides a 
good combination of availability, ease of use, and 
power for VACPAC. 

Since a real beam line vacuum system is never 
standard, VACPAC allows most parameters to be 
defined uniquely for each element. These parameters 
include: element length, temperature, conductance, gas 
desorption rate, pumping speed. and gas load. Because 
most vacuum systems are topologically one- 
dimensional, VACPAC has been designed to solve only 
one-dimensional problems. Furthermore, because 
VACPAC is built on a standard spreadsheet. it can be 
expanded to pre-process the input. For example, the 
desorption rate may depend on the geometry of the 
chamber. This can be calculated, then input into the 
appropriate column. Or side calculations of pump Tee 



conductance or pump speed versus pressure can be 
performed in the same spreadsheet as the main program. 

Also, standard formulas for chamber conductance are 
available as formula macros to preclude hunting through 
reference books. This library of formulas was generated 
from standard texts by Roth and Dushman [2,3] and can 
be easily expanded using the EXCEL function macro 
language. All of these features aid in “pre-processing” 
the data before the program solves the system of 
equations. 

The VACPAC solver uses the one-dimensionality of 
the vacuum system to speed the pressure calculations. 
Such a one-dimensional system produces a tri-diagonal 
matrix which is vary sparse and, consequently, very fast 
to solve using Gaussian elimination and back- 
substitution 141. 

.4n iterative solution method is used to solve 
“linked” systems. Systems are linked when, for 
instance, periodic boundary conditions exist. 
Alternatively, two independent piping systems can be 
modeled separately, then linked at a single node, 
signifying the intersection of the two systems. Clearly, 
the pressure at the intersection node must be identical 
when it appears in both system models. To produce this, 
the “goal-seeker” feature of EXCEL is used to drive the 
pressure differential between the coincident nodes at 
the intersection point to zero, by varying the throughput 
out of one pipe and into the other. This iterative process 
preserves the “tri-diagonality” of the system(s), while 
still producing accurate results. 

Finally, the results of the VACPAC program can be 
“post-processed” using the variety of spreadsheet 
features available in EXCEL. Pressure and throughput 
can be graphed. or the process can be iterated to 
optimize a dependent variable by altering an 
independent one. Furthermore, scenarios can be stored 
for comparison, such as pressure profiles for varying 
pump speeds or various gas species, or pump throughput 
as a function of chamber temperature. Since input 
parameters such as conductance or gas load can be 
varied easily, these scenarios can be tried and 
compared quickly, and the results can be compared 
graphically. 

PROGRAM VERIFICATION 

The PEP-II High Energy Ring (HER) straight section 
half-cell vacuum system can be used as a 
straightforward sample problem both to verify the 
accuracy of the program, and to demonstrate some of its 
features. In the straight sections, the beam pipe is a 
9.5 cm diameter stainless steel tube, with a single 
220 l/s ion pump located every 7.6 meters. Gas is 
desorbed off the surface of the tube at a rate of 2 x 
10-l 1 Torr-l/s/cm 2, The pressure profile of this simple 
system can be described by the parabolic equation: 
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Figure 1: Pressure profile and error in a HER 
straight section half-cell 

where qD is the desorption rate, B, the perimeter, L, the 
length, Sp, the pumping speed, and c, the specific 
conductance. Using VACPAC, the system is divided 
into 2.5 elements of uniform length. Since a half-cell is 
repeated sixteen times in each straight section, the 
boundary conditions for a single half-cell model are 
periodic, with the pressure the same al both ends. To 
model this, the linking feature will be used. 

Figure 1 shows the pressure profile for a half-cell 
generated by VACPAC and the percent error with 
respect to the actual value at each node. The estimated 
error is an approximation of the “discretization error” 
151. This is the error introduced by transforming a 
continuous system into a discrete, linear one. It is 
proportional to the square of the element length and to 
the second derivative of the function. Graphically, this 
error is the length of the sagitta between the linear 
discretized value, and the smooth curve of the actual 
function. Note that, since the estimated error is just an 
approximation it, also, is not exact. Comparing the 
errors above, the estimation gives an idea of the areas 
in which the model will see the largest error. 

For most physically realistic vacuum systems, this 
estimated error provides an indication of the actual error 
of the model. However, if the error approaches the limit 
of acceptability, a new model should be generated with 
a finer mesh. In regions where the slope of the function 
is changing quickly, such a finer mesh will offset the 
increased error brought on by the larger second 
derivative. This will produce a more accurate model. 

PEP-II HER VACLKJM SYSTEM MODELING 

The VACPAC program was also used to model the 
gas desorbed and the resultant pressure profile for the 
HER arc vacuum chambers. As with any high-current 
storage ring, most of the gas produced in the system 
results from the synchrotron radiation (SR) impinging 
on the wall of the chamber. SR is emitted by the beam 
as it travels in an arc through the dipole bend magnets. 
In the HER arc sections, the five meter long bend 
magnets are separated by a two meter long straight 
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Figure 2: Synchrotron radiation and resultant 
gas desorbed in a HER arc half-cell. 

region. Thus, both the SR incident on the chamber and 
the gas desorbed off the chamber wall vary with 
location [6]. Figure 2 shows this variation for a typical 
arc half-cell. 

This power curve was actually computed by 
augmenting the VACPAC program. For every element, 
the synchrotron radiation impinging on the element and 
the gas produced by the element were calculated using 
the location of the element with respect to the beam as 
it curves through the dipole magnet. Thus the messy 
trigonometry was calculated automatically, based on 
the beam line location of the element centroid. Beam 
parameters such as energy, current, critical energy of 
the electsons, and bending radius were also included in 
this calculation. 

Finally, Distributed-Ion Pumps (DIPS) were located 
throughout the length of the dipole magnet, and a single 
60 L/s sputter ion pump was located just upstream of 
the sextupole magnet.. 

Figure 3 shows the results of the VACPAC pressure 
calculation. It shows the pressure profile for a nitrogen- 
equivalent molecular weight gas, and a nominal 
chamber temperature of 60°C [7]. The linking feature of 
VACPAC was used since the profile repeats itself every 
half-cell, with the end of one running into the start of 
the next. Thus, the pressure is equal at the fist and last 
nodes. 

The average pressure of 11.1 nTorr was found by 
weighting the pressure values at each element by the 
element length. VACPAC estimates the maximum error 
to be 3.68, which is far better than the possible error of 
the desorption coefficient, so the results are about as 
accurate as possible, given the accuracy of the input. 

The VACPAC model brings to light a few interesting 
results. First, as expected, the pressure is highest in the 
quad chamber, where there are no distributed ion 
pumps. However, the sputter ion pump actually does 
very little to affect this hump. A 120 l/s or even 240 l/s 
pump does not significantly reduce the peak pressure, 
and does almost nothing to reduce the average pressure 
of the system. Thus, money is better spent on improving 
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Figure 3: Pressure profile in a HER arc half-cell. 

the DIP pumping speed, and not by putting in bigger 
lumped ion pumps. 

The second result brought to light by the VACPAC 
program is the factor of two variation in the DIP pump 
gas load. The DIP modules nearest the quad chamber 
see twice the load as those in the middle of the dipole 
chamber. This is because the modules near the end of 
the dipole chamber are pumping gas from the quad 
chamber, and are in a region of higher SR power and, 
thus, higher gas desorption. They combine to produce 
double the gas throughput and, possibly, half the life of 
the DIPS in the center of the chamber, 

CONCLUSION 

The modeling of the PEP-II HER arcs shows one 
example of the power of the finite-element analysis 
method when applied to vacuum system modeling. 
Furthermore, when using EXCEL, powerful features 
such as goal-seeking, scenario-management, iteration, 
and graphing can be brought to bear on the problem. All 
of these features were used to model the relatively 
complex variations of the HER arc vacuum system. The 
results of this modeling have subsequently been used to 
size both the lumped and distributed ion pumps. 
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