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Abstract

We present ageneral, paraxial study of triplefocusing (i.e.,
stigmatic and non-dispersive) index-free dipole magnets.
The transcendental equations which describe such magnets
lead to a second-degree polynomial equation. The two real
solutions of thisequation correspond to magnets having ei-
ther one or no intermediate foca pointin the vertical direc-
tion. The first-order optical properties of the physical solu-
tions are studied.

1 INTRODUCTION

After the focusing properties of inclined entrance and exit
faces of dipole magnets were discovered, the possibility of
designing double focusing (DF, i.e., stigmatic) deflecting
magnets became apparent [1, 2]. In general, these magnets
also disperse the beam; that is, particles with different mo-
menta entering on acommon trajectory follow different tra-
jectories after leaving the magnet.

It is obvious that the dispersion increases inside a mag-
net up to a certain deflection angle of the particles, and then
decreases. Therefore, it ispossibleto design triplefocusing
(TF, i.e., stigmatic and non-dispersive) dipole magnets.

Several examples of such magnets have already appeared
in the litterature [3, 4, 5, 6]. In each case, the choice of a
particular configuration has led to a simple solution of the
equationsthat define TF magnets. The magnet described in
[3, 4] has a deflection angle of 2709 and aparalle incident
beam. In[6], asolution isobtained in the particular case of
symmetric magnets. In [5], asolution is obtained through
anumerical computation. No complete study has been pre-
sented yet, as “the transcendental equations are quite un-
wieldy” [5].

More recently, interest in TF magnets has been renewed
for their usein bunch compression [7, 8], since the time of
flight through the magnet depends on the momentum of the
incident particle.

TF magnets are also useful when the path length of the
particles must be minimized. The present work has, infact,
been triggered by the need for non-dispersiveand stigmatic
injectionof an electron beam intoagasvessal for theplasma
wave acceleration experiment at the Ecole Polytechnique
[9]. Inthis experiment, the use of a combination of three
magnetswoul d haveresultedintoolongapathinthegasand
thus to an intolerable amount of scattering of the injected
electrons before they reach the plasma.

We present agenera study of triplefocusing, dipole(zero

index) single magnet 10]. We use Enge's paraxia formal-
ism in the approximation of a small air gap with the same
notation asin [11].

2 PARAXIAL DESCRIPTION OF TF
MAGNETS

A dipole magnet is usually described by the following pa-
rameters [11]: the straight drift length A (B) before (after)
the magnet, the radius of curvature R of the particles, the
angle « (/5) of the central ray with respect to the normal on
the entrance (exit) face of the dipole, and the deflection an-
gle. All guantitiesof dimensionlength can be normalized
to the radius of curvature, in which case they are denoted
by alower case letter, eg. a = A/R. The normalized drift
lengthsare called armshere. Hence, the set (a,b,p,«,3) de-
fines a dipole magnet.

This parametrisation might seem counter-intuitive. In
practice, one would rather position a source with a given
beam direction in front of a magnet with given dipole an-
glew, thusfixing a and «. The deflection and exit angles
¢ and 5 would then be determined by w, a, and « and the
position of the exit face of the magnet. On the contrary, it
appears here as if one designs the magnet around a given
centra trajectory.

Let (O, z,y, z) bethe moving frame of the central ray,
in which (Oz) is the tangent, (Oy) the normal, (Oz) the
bi-normal, and s is the curvilinear coordinate. The plane
(Ozy) iscalled the median or horizontal plane of the mag-
net, and the direction of the magnetic field (Oz) is called
the vertical direction. The angles are written y’ = dy/dz,
and the momentum deviation Ap/p is denoted 4. In the
paraxia approximation, the particle coordinates in phase
space (y2, ¥, 22, 25, 8) & s = so arelinear functionsof the
entrance coordinates in phase space at s = s;. The de-
ments of the transfer matrices are writtenin short form, e.g.
(yly) = dya/dy:.

In this notation, a TF magnet is described by the system
of equations:

(yly') =0, (ylo) =0, (2)

where each matrix element depends on the five parameters
defining the dipole.

The transfer matrices for transport inside the magnet are
givenin [11]. The transfer matrices from the object to the
image are simply obtained as the product of the matrices of
the drift length &, of the magnet, and of the drift length a.

(z1") =0,



Using the notationst,, = tan « andtg = tan G, the system
of equations (1) then reads:

0 = sing+ (cose+tasing)a+ (cosp+tgsine)b
—|—((tat@ —1)sing — (to +tp) cos go) ab (29
0 = e+ (I—tap)at (1-tzp)b
—|—(tat@g0 — 14 — t@)ab (Zb)
0 = 1—cose+bsing+b(l—-cosp)ts (2c)

This system of equations fixes three of the five parameters
which describe the dipole.

3 SOLUTION OF THE SYSTEM OF
EQUATIONS

The system of equations(2) istranscendenta only in ¢ and
otherwiselinear ina, b, ¢, and ¢5. Therefore, we found it
convenient to solve the system of equations (2) for the en-
trance and exit angles « and 5.

First, we solve (2c) for ¢5:

ty=— (% + cot(g))

Next, we substitute the expression obtained for ¢5 in (2b)
and solvefor &:

3)

a+ (1 —aty)p
(a +(1- ata)go) cot (g) +1—at,

b= -2 4

Then, weinsert (3) and (4) into (2a) and solvefor ¢,,:

to = — (é + cot (§>)

Finally, we substitute the expression obtained for ¢, in (4):

()

ab cot (g)(go cot (§)+2)+2(a+b)(¢ cot (§)+1)+4¢ =0

(6)
The system of equations [3,5,6] is explicitly symmetric
in entrance and exit, i.e.,, invariant under the exchange
(a, @) < (b, 3), obviously because of the symmetry under
timereversal.

Introducing the parameter « = ¢ cot (%) andthearm ra-
tiog = b/a, and substitutingu = a/¢, we re-write equa-
tion (6) in a more compact form:

gr(k+2)u* +2(g+ )(k+Du+4=0 (7
This second-degree polynomia equation in « has two so-
[utions which depend on the two free parameters ¢ and «
(k < 2for0 < ¢ < 27).

We are looking for solutions of (7) describing physical
magnets, i.e., magnetswith positivearms and thereforeg >
0, and « real and positive. The ratio ¢ being positive, the
discriminant of equation (7) A’ = (k + 1)%(g — 1)* + 4g
is aways positive. Therefore, equation (7) aways has two

real solutionswu, and «_. In order to study their sign, we
form their product p and their sum s from the coefficients
of (7):

_# 5__2(9—1—1).(142—1—1)
b= gr(k +2) - g K(k+2) ®)

We givethe sign of p and s, and thusof «, and u_ inthe
following table:

K —00 -2 -1 0 2
¢ | 360° 232.50 1809 0
P + - +

s + - |+ -

{0} ug >0 ug >0 ug <0
{1} w_ >0 w_ <0 w_ <0

Physical solutionsonly exist intheinterval = < ¢ < 27,
corresponding to negative values of x. We obtain exactly
onephysicd solutionintheinterval = < ¢ < g, where g
isdefined by ¢ cot (£2) = ko = —2, thatis, g = 232.59,
and two physical solutionsintheinterval g < ¢ < 27.

Thetwo branches of solutionscorrespond respectively to
magnets having either no or exactly one intermediate focal
pointinthevertical direction, and aretherefore denoted {0}
and {1}. Magnets of both classes also have an intermediate
focal pointinthe horizontal plane. Asthedispersion at this
point islarge, momentum selection may be done easily us-
ing collimating dlits.

We calculate the parameters «, b, «, /3, and the dipole
angle w anayticaly as functions of ¢ and ¢ using equa
tions(3),(5), and (7), and present theminfigure1l. Thesym-
metry between entrance and exit appearsclearly infigure la
The dipoleanglew = ¢ + « + 3 isobviously symmetric
under exchange of g and 1/¢.

Figure 1b shows the above parameters as functions of ¢
for arm ratios greater than unity'. One observes that the
arms are longer on branch {1} than on branch {0}. The
magnet described inreferences[3, 4] isindicated by an open
sguare. Ray tracing of example magnets for branches {0}
and {1} are presented in reference[ 10].

4 OPTICAL PROPERTIES OF THE
SOLUTIONS

Magnification The horizontal and vertical magnifica
tions are given by m, = (yly) and m, = (z|z) and are
equal tom, = gandm, = —g(k + 1) — 2 [10].

Obvioudly, m. is positive for branch {1}, and negative
for branch {0}, depending directly on the existence of an
intermediate focal point in the vertical direction.

Of particular interest isthe case where the image shows
no first-order distortion, that is, where the horizontal and
vertical magnificationshave thesame absolutevalue: m, =
+my, thatis, m, = £g¢. Using the above expression, we

1The graphs for arm ratios smaller than unity may be obtained by in-
terchanging « and b, and « and 3.



Figure 1: Variation of a,b,«,3 and w with ¢ and ¢. Solid:
branch {1}, dashed: branch {0}.

obtainu = —2/¢g(x + 1 £ 1). Substituting this expression
for « inequation (7), weaobtaing = 1. Hence, the condition
for identical magnificationsinthehorizonta and vertical di-
rectionsisindependent of .

Angular dispersion Theangular dispersionis(y’|§) =
sing + (1 — cos p)tg, thatis, (v/|6) = (cos ¢ — 1)/b here,
and is negative for ¢ < 360°. It istherefore impossible
to design strictly achromatic, i.e., non-dispersiveand angle
achromatic, DF magnets with finite arm lengths.

Timeof flight The variation A of the time of flight of
the particlesis described inthe same paraxia formalism by
adevelopment to first order around the central trajectory.

The coefficients describing the dependance of A on posi-
tion and anglein thevertical direction vanish for symmetry
reasons.

In the horizontal plane, the coefficient describing the de-
pendance of A onangleis(A|y’) = (1 — cos ) and ispos-
itivefor ¢ < 360°. The coefficient describing the depen-
dance of A on positionis (Aly) = siny + (1 — cos p)ta,
that is, (Aly) = (cos¢ — 1)/a here, and is negative. The
coefficient describing the dependance of A on momentumis
(Al8) = ¢ —sin ¢, and is positive.

We can seethat it isimpossibleto design isochronous TF
magnets, with finite arm lengths.

Special case of zeroarmratio (g — 0) A caseof
practical interest isthe deflection of a paralel beam with a
large energy spread and its focusing on a small spot. This

situation corresponds to the limit g — 0, « — oo, and
gu finite. We then read equation (7) as an equation in gu:
k(K +2)(gu)* + 2(k + 1)gu = 0. The non-trivial solution
(branch {1})is: gu = —2(x + 1)/k(x + 2).

For the particular value » = 2700, that is, k = —p, we
obtainbt — 2(37 — 2)/(37 — 4) ~ 2.74,a — o0, a0 —
T—p/2,thatis o — 450, and tan § — 37/2(37 —2), that
is, 3 — 32.40. This magnet has been presented in [3, 4].

Special caseof aunitarmratio (g = 1) Forg =1,
wegeta = b and o = 3: themagnet issymmetric. We then
get unit absolute magnifications: m, = 1 and m, = +1.
The solutionof equation (7) isparticularly simple here, with
A = 4,4 = =2/k (branch {0}) and v = —2/(x + 2)
(branch {1}). The particular value ¢ = 2700 givesa =
b=2,a=0=arctan (1/2) ~ 26.6° onbranch {0} used
in reference [9].

5 CONCLUSION

We have presented a genera study of TF, index-free, sin-
gle dipole magnets. We have written the paraxial equations
describing TF magnets in the approximation of a small air
gap.

We have solved the system of three equationsin five vari-
ables, which leads to a second-degree polynomial equation.
The solutions describe atwo dimensional surface whichis
parametrized by the angle of deflection of the particles and
by thearms ratio.

Physical solutions exist in the interval 180° < ¢ <
3609 only. We obtain one physical solutionin the interval
1800 < ¢ < 232.59, and two physical solutionsin thein-
terval 232.59 < ¢ < 3609. The two branches of solutions
correspond respectively to magnets having either none or
only oneintermediate focal pointin the vertica direction.
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