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Abstract and the kick functiory is given by:
The paper presents a method of dynamic aperture enhance- Qa9 + 3a122 + by + by
ment by adding nonlinear fields of higher order in sex- flz) = - : (4)

2
tupoles.The method follows from the theory of integrable 628" + 015 + ao

systems; all the lattices considered here have analytical p&similar map was presented earlier in [2].
riodic invariants. For the model based on thin lenses the The transformation over two such cells was made in [1]
dynamic aperture can be made infinite in principle, anh a direct way for quadratic polynomials;jn It was found
moreover, no chaotic trajectories appear in these maps. Aflere that the transformation of coefficients of these poly-
the expressions for nonlinear kicks are presented in a siiomials is the identity transformation for the 2-cell map.
ple analytical form, they are determined by the linear latticat the beginning of the first drift space the general form of
and sextupole strengths. For continuously distributed fielgigvariant quadratic in the both lenses reads:
a general 1D approach is developed. Some interesting ex-
amples of 2D accelerator lattices are presented. They show I(z,7) = ax’T* + b2T° + ca’T
the ways how to construct 2D lattices of a perfect nonlinear tdaT + ex? + 7 + gz + hT, (5)
accelerator optics with regular motion.
herea, b, c, d, e, f, g, h are arbitrary constants,= z + p.
1 BASIC CELL MAP We obtain the kick of the first lens from the expression
for invariant at the beginning of the first (or second) drift
In this section we construct model accelerator lattices COBpace. After expressing this invariant through the momen-
sisting of one or two cells each consisting of a drift spacgim p and coordinate: we have the invariant in the form

and a thin nonlinear lens. In the map considered, we py) andf = —B/A, as in the first example. For the both
p = ', wherez' is the particle trajectory slope, and takekicks we have:

the drift lengthl = 1 to simplify formulas. The map corre- R
i is: b)z® +dx + h
sponding to one cell is: () (@) = — ZEUZ)Z b(c)z - fgi; _ 9 (6)

T=z+p,p=p+ f(T). 1) _ -
In Fig. 1 one can see the phase space portaits with the

Herez, p are the initial values and, p are the final values kick (4). This lattice presents a model of "integrable” ac-
of the coordinate and momentuif() is the kick function celerator with the regular finite nonlinear motion every-
of the nonlinear lens to be found jointly with the desiredvhere, and the with zero strength of all resonances (the

invariant. invariant for this case has no critical points). This model
Let’s search it in the form of a polynomial, quadratic ingives the way of elimination of chaos for a lattice with
momentum. The equation for an invaridris: one sextupole: we just have to add to it higher nonlin-

earities from the Taylor expansion of the kick (4), with
A(@)p*+B(@)p+C () = A(z)p® + B(z)p+C(z). (2) given linear part and sextupole term of the kick. Then we
have to choose the third parameter so as to make the de-
where A(z), B(z),C(x) are any analytic functions of the sjrable phase portrait with needed aperture and free from
coordinate. The kiclf () of the nonlinear lens is also as-resonances. Then all the other terms in the expansion
sumed to be an arbitrary analytic functionof will be determined by these three fixed lower terms. The
The equation should be valid for all andp. In par- same method applied to a lattice with two nonlinear lenses
ticular, atp = 0, (orz = 7) we can find the kick func- is valid for an accelerator with cells comprising two sex-
tion from previous expression(z) = —B(x)/A(z), as tupoles [3]. It is not important, that we take here a free
expressed through the other unknown functions. SubsHection in between two nonlinear lenses: we can represent
tuting f (=) back into (2) we can obtain a general form ofan arbitrary linear matrix with a drift space and two thin
A(z), B(z), C(z) by comparison of the L.H.S. and R.H.S.|enses; the only limitation is that linear matrices between
(one can find the details in [1]). The general form of invaritwo thin nonlinear lenses must have equal eigenvalues. So
antis: it can already be applied for improvment of eitheor z
. ‘ ‘ dynamic aperture in simple lattices. Further, this idea of
I(z,p) = (a22® +arz+ao)p® + (2020 +3a1z®  (3)  adding higher nonlinearities of fields for making the mo-
+b1x+bo)p + asa? +2a1 2> + by +2bx tion regular is developed for distributed fields.



Transformation 2° applies an arbitrary time-dependent
. coordinate normalization functiof(¢) and involves a cor-
responding transformation of the time variatile- ¢:

. . P .

dt = A%dT,x = AX ,p=AX + AX = 1 +AX, (12)
where ‘dot’ denotes differentiation with respect to the
new timet and use is made of the Hamiltonian equation
dX/dT = P in the last line. By its definitionp = #,
Vi while the second Hamiltonian equation:

P A . .. U’ ..
L J )= — —P—+AX +AX = —— + AX
p=7 - P +AX+ =t

N o yields the desired time-dependent Hamiltonian function:

Figure 1: Phase space for “drift space plus one thin non- p’ 1 (g) _ é _ ﬁ (13)
linear lens” map. Parameters of the kick (4) ard: = 2 A2 A A 27

0.2,50 =0,b1 = 045,62 =0.4,a0 = 1. Again the invariant of this 1.5D integrable system is avail-

able from (7): using (12) we express, P via z,p and
2 INVARIANTS POLYNOMIAL IN obtain:
MOMENTUM E3

The previous section dealt with the systems where the time A

dependence was represented by delta-functional non-linddts expression is a generalization of the Courant-Snyder
kick functions, and the invariants were quadratic in moinvariant of the linear systerhs

mentum only at the kick moment. Here we constructa fam- Any combination of transformatioris and2° also pro-

ily of continuous time-dependent 1D Hamiltonians whictvides an integrable system of the form (8). Note thatany in-
have a quadratic invariant, and thus the respective moti¢@grable system produced with this technique involves three
in 1.5D is integrable. Starting from a Hamiltonian which isarbitrary functions?/(X), D(t) and A(t). One can prove
independent of the time variable (with the particle mass directly that they form a complete set of freedoms for a

H = %(Ap — Az)?> + U(=) = const . (14)

m = 1) 1.5D integrable system with the invariant quadratic in mo-
P2 mentum, see [4]. Transformati@i was applied in [4] to
H(X,P) = 9 +U(X), () the 2D systems preserving angular momentum, in particu-

we can apply a time-dependent (canonical) transformatitgff\r to the problem of round colliding beams.

of the dynamic variables along with a relevant transforma- H"_V_Ve"?" the freedoms in . aqd2 do ’?0‘ sgfﬁce fpr
specification of a general periodic AG lattice with variable

. . . _ T(t
tion of the time variabl(¢): X (T), P(T) ™3 & (1), p(t), sextupolar fields. Combinintf and2° we can put down

so that the Hamiltonian will take the form: the efficient general form for an invariant cubicin
2
H(z,p,t) = % +U(x,t). ®8) ZI(z,p,t) = %(Ap — B*+U(X,T)(Ap— B)+V(X,T)
15
Transformation 1° is additive, use is made of any coordi-with B = Az + A2D. A # 0 and D being arbi(trar)y
nate displacement function of tinig(?): functions of timeonly, and the new variableX (z,t) =
L=T, =X +D(t),p=P+D(), ) x/A — D andT'(t) = [ dt/A%. The invariance condition

relatesV andV by a set of quasilinear equations in partial

here ‘dot' stands for the time derivative. The time-derivatives (the latter are herafter denoted with correspond-

dependent Hamiltonian of the new system has the form (éﬂg subscripts):
9 Vx+Ur = 0,

H=2+U@-D®)-z-D®).  (10) Vr—UUx = 0, (16)

. . . - Lindeed, Hill's equationt + g(t)z = 0 impliestd = g(t)z2/2 in
Apparentlly, the invariant of this 1.5D system is given b)@). TakingU(X) = X2/2 in (7) we immediately obtain from (13):
the functionH (X, P) of Eq. (7) whereX, P should be it g(t)A = A—3, i.e. the well-known equation for the betatron ampli-
expressed in terms of the new variahlgg: tude function, hencel(t) = /3, and (14) takes the usual form of the
Courant-Snyder invariant. We see tlap correspond to the conventional

. betatron variableg, is the machine azimuth, whil&, P are the normal-
_ 2 _ 1 )
H = B (p—D(t)" + Uz — D(t)) =const.  (11)  jzed betatron variables andstands for the betatron phase advance.




and gives the expression for the forte

fmwz—iﬂx+1MmuMDn_ (17) b o] >{*

A3 A o

Equations (16) are similar to those of transonic flow in fluid
dynamics, in inverse functions they convert ititear Tri-
comi’s equation. Providetl < 0 everywhere, we come to
the hyperbolic type it/ + (UUx) x = 0, thus the (peri- —— :
odic) Cauchy problem will bring in two free functions of o | T
on the axisr = 0. These together withl, D give us a suf- B e
ficient freedom to specify at = 0 any periodicf, f, and T ]
fzz, 1.€. the assigned gradient and sextupolar component
functions in the lattice together with = 0 on the closed L. 1.
orbit. R T

The invariants quartic ip involve the set of 3 quasilin- _ _ s
ear equations and thus may provide one more free functi(]),:ﬁgure 2: 2D phase space for “drift space plus one non-

atz = 0, e.g. for assignment of a desired octupolar compd€ar lens” map. X-PX, Y-PY projections are on the left

nent function for strong (in principle, unlimited) enhancefl9Ures; upper right shows X-Y trajectory, lower right is
ment of the dynamic aperture. PX-PY portrait. Parameters of the comlex kick ate=

10,6=0.2,d=5h=0,f = 1.

3 EXAMPLES OF INTEGRABLE 2D MAP

4 CONCLUSION
We can carry over all the results of 1D case to two dime

sional motion by introducing the 2D map in complex varir-]rhe main result of the present paper is the construction of

ables [1]. One can construct interesting "integrable” exan{-ea.S'blte 1? r_napIS (;f the aﬁce:er'?r;(orgla;tlcedtyp_e having in-
ples for the 2D case. Let's take the following map: variants ot simpie form. +p o the ord order in momen-
tum all the invariants can be obtained from linear equa-

tions! Some examples of solutions can be extended to the
2D case, an implementation of the integrable lattices in
Pn = P=2z+ Flz), (18) practical lattice design is possible in order to improve the
dynamic aperture and, it is hoped, to cure resonance over-

herez = = + iy andp = p, + ip, are composed from |55ing and global stochasticity. An integrable 2D lattice
the horizontal and vertical coordinates and their respectiV€ -onstructed in view to give a guideline for designing an
momenta. The complex kick function “integrable machine” optics.
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