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Abstract

Nonlinear dynamics of transverse beam motion have been
studied experimentally at the VEPP-4M electron-positron
collider. The following aspects of non-linear beam be-
havior were investigated: the dynamic aperture reduction
due to the chromatic sextupoles, the amplitude dependent
tune shift and phase space topology near the nonlinear
resonances. The results of the observations are presented
and compared with the theoretical estimations.

1 INTRODUCTION

This paper describes the results of the nonlinear dynamics
experiments which were performed at VEPP-4M storage
ring in 1995-1996. The main goals of these experiments
were: studying of the essential aspects of the single particle
dynamics (phase space distortion,amplitude dependent tune
shift and dynamic aperture limitation); finding the ways to
control the nonlinear effects and increase the dynamic aper-
ture, and checking the validity of the theoretical predictions.

2 HARDWARE DESCRIPTION

The VEPP-4M storage ring is a 6 GeV racetrack electron-
positron collider with a circumference of 366 m. This study
was performed at the injection energy of 1.8 GeV. The rel-
evant parameters of VEPP-4M at this energy are given in
Table:

Energy 1.8 GeV
Revolution period 1.2 �s
Betatron tunes (h/v) 8.620/7.560
Natural chromaticity (h/v) -13.6/-20.7
Horizontal emittance 35 nm-rad
Rms beam bunch length 6 cm
Damping times (h/v/long.) 35 ms/70 ms/70 ms

To produce the coherent transverse motion, the beam is
kicked verticallyor horizontallywith the pulsed electromag-
netic kicker. The pulse duration is 50 ns for the horizon-
tal kicker and 150 ns for the vertical one. The oscillation
of the beam centroid and beam intensity are measured turn-
by-turn with beam position monitor, BPM, for 1024 revolu-
tions. The measured BPM rms resolution in 1 to 5 mA beam
current range is �x;z ' 70�m.

3 PHASE SPACE TRAJECTORIES

We have been tracking the motion of the beam centroid us-
ing single BPM only [3]. To illustrate our approach let us

consider the horizontal betatron oscillation at the BPM az-
imuth

x(n) = a�
1=2
x cos 2�n�x;

x0(n) = �a=�
1=2
x [�x cos 2�n�x + sin 2�n�x]; (1)

where �x = �1=2�0x(s) and �x(s) are the betatron func-
tions and phase advance fornth turn is equal to 2�n�x. This
expression can be rewritten in the form

x0(n) = [x�=2(n) � �xx(n)]=�x; (2)

where x�=2(n) is the coordinate that would be measured by
the ”pseudo”-BPM placed at the azimuth which corresponds
to the following conditions: (i) �x; �x here are the same as
for the first BPM, (ii) the betatron phase shift between two
BPMs is exactly �=2, and (iii) the beam path from the first
BPM to the second one is free from nonlinearities. We re-
fer to this second BPM as ”pseudo”-BPM because it is im-
possible in practice to meet all the requirements mentioned
above. Introducing the ”angle-action” variables (Jx; �x) as
usual [2] and substituting (1) we can obtain

Jx(n) = (x2�=2(n) + x2(n))=2�x; (3)

tan�x(n) = x�=2(n)=x(n):

One can see that �x is canceled from the expression for
Jx(�x) and phase curves demonstrate a ”mere” nonlinear
distortion.

Applying FFT to the array of x(n) measured by BPM
and using few main harmonics to construct the coordinates
X(n), the rules for harmonics transformation can be found
to obtain the array of X0(n). This approach was verified
with computer tracking and compared also with usual ap-
proach on VEPP-4M when two BPMs were used with �=2
betatron phase shift between them. Fig.1 shows the usual
two BMPs technique.

.
Figure 1: Phase space measured with usual two BPMs tech-
nique.

Fig.2 demonstrates the agreement between the measured
horizontal phase trajectory and that simulated by tracking
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Figure 2: Experimental and simulated phase trajectories.

code. The correspondence seems quite impressive. Fig.3
shows the phase space topology near the resonance 4�x =

35 and directly at this resonance (two BPMs without har-
monic decomposition).

.
Figure 3: Phase trajectories near and at resonance 4�x =

35. The latter plot does not use harmonic decomposition.

High spectral resolution permits to estimate the param-
eters of the nonlinear system. We have extracted the am-
plitude of the 3�x = 26 resonance driving term from the
measured data and compared it with that calculated from the
nonlinear Hamiltonian [4]. The agreement seems not bad:
the experimental value is of A326 = �2:9 � 1:0 m�1=2

while the theoretical one is of A326 = �2:1 m�1=2.

4 AMPLITUDE DEPENDENT TUNE
SHIFT

Nonlinear detuning was studied with the same turn-by-turn
technique. The coherent beam oscillations were fired by
several kicker pulses with different amplitudes, and tune
was extracted from the FFT spectrum. The accuracy of the
tune measurement is better than �� = 2 � 10�4.

A nonlinear tune shift is proportional to the square of the
initial beam displacement independently of octupole or sex-
tupole field causes it. A general 2D form of the amplitude
dependent tune shifts can be expressed as (second order ap-
proximation):

��x(ax; az) = C11a
2
x + C12a

2
z;

��z(ax; az) = C21a
2
x + C22a

2
z; (4)

where Cnm depends on particular perturbative potential.
The measured and estimated coefficients values are listed
in Table

Cnm � 10
4 Theory Experiment

C11 0.1 9.0
C12 -0.6 -1.0
C21 -1.9 -4.0
C22 -0.6 -1.0

The difference in theoretical and experimental C11 has
motivated us to explore systematically the horizontal non-
linearity of the ring. We have used the difference between
octupole and sextupole induced tune shift to distinguish
which one defines C11 in our case. For the octupole po-
tential, horizontal tune shift is independent of initial tune
value and is written as [5]

��
(o)
x (Jx) =

Jx
16�

RC
0
O(s)�2x(s)ds + o(J2

x); (5)

where C is the machine circumference and O(s) =

(d3Bz(s)=dx
3)=B� is the effective octupole strength.

On the contrary, sextupole induced tune shift depends on
the initial tune in a resonant way and near the resonance
3�x0 ' m can be written as

��
(s)
x (Jx) ' �Jx � 36

A2

3m

3�x�m
+ o(J2

x); (6)

A3m = 1
48�

R 2�

0
�
3=2
x S cos(3( x � �x�) +m�)d�;

where S(s) = (d2Bz(s)=dx
2)=B� is the effective sex-

tupole strength and A3m is the azimuthal harmonic of the
sextupole perturbation Hamiltonian.

.
0

5

10

15

20

8.6 8.62 8.64 8.66 8.68 8.7 8.72

C
11

*1
0e

4 
(1

/m
m

2)

Hor. betatron tune Qx

Hor. betatron tune dependance of C11

dQx=0.026

3Qx=26

.
0

5

10

15

20

8.6 8.62 8.64 8.66 8.68 8.7 8.72

C
11

*1
0e

4 
(1

/m
m

2)

Hor. betatron tune Qx

Hor. betatron tune dependance of C11

dQx=0.015

3Qx=26

Figure 4: Left: nonlinear detuning near the resonance
3�x = 26. Solid line - theoretical prediction. Resonance
width ��x = 0:026. Right: same as left but with the reso-
nance driving term reduced. Note that the resonance width
is decreased in a factor of 2.

The measurement of the horizontal tune shift as a function
of the initial tune value �x0 around the resonance 3�x0 = 26

shows (Fig.4, left) that the resulting nonlinear detuning in
the working point is induced both by sextupole and octupole
perturbations. First one demonstrates typical resonant be-
havior, while second one produces constant ”background”
with the value of ��(o)x =a2x ' 8 � 10�4 mm�2. The oc-
tupole correctors can control the ”background” value while
the resonant behavior of the sextupole detuning component
remains the same. And vice versa, when we have decreased
the strength of the strong sextupole lenses in interaction re-
gion and compensated the chromaticity with the sextupole
correctors distributed around the ring, we saw that it does
not influence on the octupole ”background” but significantly
reduces the sextupole component (together with the reso-
nance width), as it seen in Fig.4 (right).

The source of rather high octupole nonlinearity has not
yet understood and more vigorous study is required. As a
probable candidate we consider nonlinear errors in the Final
Focus quadrupoles.

5 DYNAMIC APERTURE

Dynamic aperture studies are being carried out also on
VEPP-4M with the same turn-by-turn diagnostic technique



but now besides the beam displacement, the beam loss
measurement is required to define the dynamic or physical
aperture limit.
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Figure 5: Fast beam loss at dynamic (left) and physical
(right) apertures. Plot presents first 100 turns.

To be assure that the particles loss is really connected with
the boundary of the stable area, we have explored the pro-
cess of particles escaping from the tail of beam distribution.
We have found that to determine the aperture limit with turn-
by-turn loss measurements it is important to consider first
20-40 revolutions of the beam (Fig.5, left). A long obser-
vation includes many other effects and cannot be a figure of
merit for the aperture measurement. For instance, the beam
intensity decreasing measured with a current transformer
depends on the initial beam current that points to the prob-
able coherent instabilities which take part in the beam loss.
Fast intensity loss allows us to distinguishbetween dynamic
and physical aperture limitation. The first one displays the
intensity reducing during few tens turns because the oscilla-
tion amplitude grows at resonance fast but not immediately
while the second one occurs for the very few revolutions (it
depends on the fractional tune value). Fig.5 (right) shows
the beam loss at the knife of the movable scraper.

Another one difference between computer and experi-
mental tracking near the border of stable area is a finite beam
size: when the tail of the transverse beam distribution is cut
off by the aperture limit, the BPM readings became wrong.
We have calculated this effect assuming a Gaussian beam
density distribution and results agree rather good to those
obtained from experiment.
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Figure 6: BPM reading versus kick voltage.

To correct the BPM position measurements we used lin-
ear correspondence between kick voltage and beam position
(see fig.6). The coefficient was measured at low amplitude
before performing aperture measurements. We determined
the aperture boundary as the displacement at which beam
lost the half of its initial intensity. With this methodic, the
following aperture limits were measured at the azimuth of

BPM SRP3:

Ax = 4:5mm; (�x = 4m); Az = 5:1mm; (�z = 22m):

The beam loss profile for the first few tens turns shows that
for the horizontal direction, the aperture is defined by the
nonlinear processes while vertical aperture is determined by
the physical limitation.

To check the value of the horizontal dynamic aperture,
the tracking simulation and the analytical calculation by per-
turbative approach were performed. Both of them predict
similar value for the stable motion boundary (Ax ' 4:3

mm) which nicely corresponds to those obtained from ex-
periment.

To increase the dynamic aperture we have tried the fol-
lowing cures: (a) decreasing of the main sextupole driving
term as we described above; (b) reducing of C11 value by
the octupole corrections; (c) combination of both (a) and (b)
techniques. The case (a) demonstrates rather good result:
the horizontal dynamic aperture is increased up to Ax = 7

mm while in cases (b) and (c) the increasing is almost the
same and small (Ax = 5� 5:8 mm).
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