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Abstract

   It is known for a long time, from analytical calculus, 
that r.m.s. emittance is conserved when a charged particle 
beam is uniform or self-similar. We can show, from the 
envelope equations,  that if either propriety is verified, 
r.m.s. emittance is a real invariant of the system, which 
has now a "natural" closure. This leads to the idea  that 
the  beam energy is enclosed in a bag which could be 
stressed and stretched in the phase space. One can  prove 
that r.m.s. radius and thermal energy limits exist, authori-
zing such a  behaviour. These boundaries determine a do-
main in which  the beam can effectively be reversibly 
transported. We analyzed  these questions, analytically 
from the envelope and hydrodynamic equations, and nu-
merically from the results of the self-consistent code Re-
noir simulating real situations of transport. Self-similarity 
shows up very quickly after some periods, in  the integral, 
position and phase spaces. The notion of bag of energy is 
more and more subtle. The beam is always thermalizing, 
but the zone which is thermalized  has a self-similar beha-
viour. 

1  INTRODUCTION

   An intense charged particle beam can be viewed as a 
partially neutralized or non-neutral plasma, in which par-
ticles interact via coulombian self-consistent forces. 
   The beam is transported, in any accelerator, in dynami-
cal equilibrium between the outward kinetic pressure and 
repulsive self-consistent forces, and the inward  external 
forces.
   In a continuous or FODO magnetic channel, the whole 
system is adiabatic, that is to say that neither electrical 
work nor thermal energy are exchanged on the bounda-
ries; once the total energy of the beam is fixed at injec-
tion, it must be conserved during the transport.
   But, as long as the system is not at canonical equili-
brium, internal exchanges exist, due to a mismatch into 
the beam, or because the beam breathing is regularly res-
tored by  the external magnetic field.
   As the total energy of the system is conserved, these 
non-linear mechanisms contribute locally to the transfor-
mation or redistribution of energy; each perturbation into 
the phase space distribution function is converted into 
heat by the effect of non-linear space charge waves and 
vice versa, until the system reaches an internal balance 
between thermal and electromagnetic energies.

   An excellent indicator of this transformation is given by 
the plasma frequency  ωp which gives an idea of the dam-
ping of any high frequency disturbance (ω>ωp) in the 
plasma. As the plasma frequency depends on the density, 
it can be seen that in a beam which parameters are: I0=50 
mA and R0=10-3 m,  the major part of the profile 
(99,99%) is thermalized after some meters of transport.
   The problem is that 0,01% of the beam profile continue 
to be desadapted in the distribution tail, because the non-
linear effects are too tiny and the resulting damping is too 
slow : this is the halo.  
    But, we must keep in mind that charge, motion, energy 
are still conserved in the distribution tail, usual equations 
are still verified : the transient effects are the same as we 
saw in the core for a shorter time.
    After discussing some properties of the Fokker-Planck, 
hydrodynamic and envelope equations near equilibrium, 
we will show that some apparent ambiguities can be over-
come; this will give precise ideas for the mechanisms of 
the transient phase of thermalisation.

2 THE FOKKER-PLANCK EQUATION

   The Fokker-Planck equation near equilibrium is :
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                    (1)

where f =f(r,v,t) is the distribution function in the phase-
space (r-v), β is the effective collision frequency, D is the  
diffusion coefficient. 
    All the difficulty is in the evaluation of the two coeffi-
cients β and D which are often supposed constant; this 
hypothesis drives naturally the system, after a very long 
time t∞ ,  to the Maxwell-Boltzmann equilibrium and the 
classical distribution function :

f(r,v) = n(r) × exp( )-
v2β
2D                      (2)

where n(r)=∫ fdv  is the particle density.
   But, the sufficient condition for the system to be at 
equilibrium is that the velocity distribution function be  
continuous and decreasing; getting for example β=β(r) 
and D=D(r) we can easily obtain from  (1) :
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or, integrating (3) versus velocity :
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    The kinetic temperature T⊥(r) can be a function of po-
sition; in this case, when (1) is verified, the system is in a 
"metaequilibrium".
    Thus the Fokker-Planck equation allows some short 
time equilibria, where the kinetic temperature can be dif-
ferent from the Maxwell-Boltzmann temperature.

3 THE HYDRODYNAMIC EQUATIONS

    Without making any hypothesis about the form of the 
distribution function f, we can calculate from the Fokker-
Planck equation, the first moments  representing respecti-
vely the mass ρ, the motion ρu and the kinetic pressure 
Ψ; we obtain in the position space :
                                                                                     (5)
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where ρ(r)=nγm is the mass density, u(r)=∫ fvdv is the 
hydrodynamic velocity, Ψ(r)=nT(r) is the kinetic pres-
sure, Q(r)=∫ fvv2dv is the heat flux, Γ(r)=(q/m)(E+u×B) 
represents the total  electromagnetic force (s+x) and can 
be calculated from the electrodynamic equations.
    Now, the system of equations (5) need some closure 
relation; but, let us remember the adiabaticity condition : 
∇.Q=0 or ∫ QdS=0 on the boundaries. When the system is 
near the equilibrium D/Dt≈0, we must have ∇.Q=0 eve-
rywhere in the domain : there is no more internal heat ex-
change into the system, the internal balance is equilibra-
ted; thus the components of the dyadic pressure becomes : 
Ψrr=Ψθθ=Ψ⊥  and Ψrθ=0.
     Now, without any other hypothesis, we obtain from 
the  equation of motion, the generalized Boltzmann rela-
tion 

∂Ψ⊥
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+ n

∂
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and, from the pressure equation, the beam state equation :
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n2
= C or T⊥(r) =

T∗
n∗

× n(r)           (7)

where Ψ⊥(r)=nT⊥ is the transverse kinetic pressure, Φ 
and Az are respectively the scalar and vector electroma-
gnetic potentials, T∗ and n∗ are  respectively the averaged 
temperature and density of the beam.
     The relation (7) is in agreement with Lawson [4] : T⊥ 
is necessarily zero at the beam edge, since all the particles 
there have no radial velocity. 
     From the relations (6) and (7), and using the Poisson 
and Ampere laws to calculate the potentials, we readily 
obtain :

∇2ϕ - k2ϕ = 0                                  (8)

where k2=n∗q2/γ2ε0T* and ϕ=q(Φ-uzAz)
s+x - cte(a).

    The solution of (8) has longly been studied by Lawson 
[4], Reiser [5], and Struckmeier [6];  this is the water-bag 
profile :

n(r) = n0 ×( )1-
I0(kr)

I0(ka)                                   (9)

where a is the beam limit or the edge of an hypothetical 
independent domain into the beam.
     For small k (large ε) the profile is reduced to the clas-
sical paraboloid form (1-r2/a2),  and for large k (small ε) 
it  becomes uniform except very near the edge.
    With (9) appears the notion of "energy bag" in which 
are enclosed the particles : due to the symplecticity of the 
variables r-v, the phase space distribution function must 
have a finite and self-limited domain.
    This propriety is not really in contradiction with the 
relation (2), because we saw in (4) and (7) that the tempe-
rature could decrease with the density; but there subsists 
some ambiguity because in (2) the domain is not limited.
     Finally, let us remark that we can drive a more refined 
calculus, in which the phase space will be split in inde-
pendent domains, but the problem is to define first the 
separatrix location of these domains.

4 THE ENVELOPE EQUATIONS

    We can still calculate from (1) the moments in both 
position and velocity spaces, representing, the scalar and 
vectorial virials, and the energy [7]. The integration can 
be done self-consistently, and we obtain finally the enve-
loppe and energy equations.
    These equations have been intensively studied, but 
what is important for us, is the propriety of self-similarity 



found by Lee,Yu and Barletta [8] : they showed that emit-
tance is conserved, and beam is near thermal equilibrium 
when the particle velocities verify the relation : 

v = r ×
R•

R
+q                                                (10)

where R is the r.m.s. radius, and q is a thermal compo-
nent.

5 THE SELF-SIMILARITY

    The relation (10) has a fondamental propriety : when it 
is applied to the envelope equations, it gives the parame-
ters of the system at equilibrium, and allows the pre-
viewing of its evolution near the equilibrium; this pro-
priety is known particularly in critical systems.
     In this class of systems, we know that when the self-
similarity is observed, the system is invariant by transla-
tion; when it arrives to a some critical state, fluctuations 
are found which are overlapping each other : we can 
speak of scale invariance.
     This phenomenon is observed in turbulence : under a 
some degree of perturbation, the non-linear coupling are 
such important that the frequency spectrum seems to be 
continuous [11].
     The best way to find a spectrum as smooth as possible, 
is to suppose that the averaged tune  number is a function 
of a diophantian number (a very irrationnal number); in 
this case,  no mode associated with a rationnal tune num-
ber  (1/2,1/3,1/4,...) is advantaged.
     This is the resonnance overlap pushed to its extremity: 
the system is in global chaos. The averaged tune number 
can be expressed by :
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β >
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=
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2(1 + η2)
= 1                    (11)

where kβ is the particle betatronic wave number, kc is the 
core breathing wave number, and η is the space charge 
tune depression [9].
    Now, we have to determine the value of η for which 
begins the global chaos : it is clearly when the electroma-
gnetic non-linear effects overtake the thermal ones; we 
write to have an  adimensionned relation :
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     The solution of (12) is the golden average, η=(√5-
1)/2 the most irrationnal number known, and is in excel-
lent accord with Wangler [9] and Chen and Jameson [10] 

who present a graph where the chaos starts near η=0.6.
     With this value of η, we can calculate the averaged 
tune number ν∗, and the tune of the KAM surface ν1 sup-
posing that its location is at the edge of the first waterbag  
a1=√3×R1 and that this bag has a self-similar behaviour :

     

 ν∗=0.343560749....      ν1=0.595064672.... 

     We can evaluate the location of the first KAM barrier, 
and the following by inference, supposing R2≈ 2R1...
This is not so clear for the calculus of the following tune 
numbers because once the beam is constituted of two, 
three...energy bags, the determination of the core brea-
thing frequency is more complicated.

6 CONCLUSION

    If we get the system in a  permanent regime (the tran-
sient effects are tiny or negligeable), we can oversee the 
complexity of the processes, and try to find the puzzle :
    •the KAM surfaces exist because they correspond to 
stable trajectories of the particles; their tune is in the vici-
nity of a diophantian number
     •each KAM surface delimits an independent domain 
which can contain a given quantity of thermal and elec-
tromagnetic energies
     •each time a bag is filled up, it is in a state of global 
chaos [12], the resonnance overlap [1,2,3] is so important 
that the resonnances have nearly disappeared
     •when some particle arrive to jump the KAM barrier 
because an energy remainder still exists, or arrive to cross 
it by Arnold’s diffusion, it falls in the neighboured bag, 
where we find again the same mechanisms.
      One sees how can proceed the thermalisation : the 
maxwellian distribution function is built, step by step, by 
superposition of self-similar energy-bags; this is the cen-
tral limit theorem in all its beauty.
     When the transient effects are important (charge space 
waves), the particles can be sputtered far away, in the fol-
lowing bags; no self-similar structure is in state of global 
chaos, resonnances can be seen in each bag.
     As the same mechanisms can be observed in 2D in a 
FODO channel, we can try to exploit them in a LINAC, 
because the transit time is short, and we can hope that 
particles be contained during a sufficient time by the 
KAM barriers, when the beam is well thermalized.
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