
ASSESSMENT OF THE ACHIEVABLE EMITTANCE RATIO IN
DIAMOND

Marc Muñoz†, CLRC Daresbury Laboratory, Warrington, WA4 4AD, UK

                                                       
† Permanent Address: Laboratori del Sincrotró de Barcelona-IFAE, E-08193 Barcelona, Spain

Abstract

The performance of DIAMOND as a light source is
determined by the vertical beam size, that is by the
vertical emittance. The εy is determined by two factors:
the vertical dispersion generated in the bending magnets
by errors, and the coupling of the oscillation in the
vertical and horizontal plane. In this paper we review the
theory concerning the evaluation of the vertical
emittance and the coupling. We give an estimate of the
vertical emittance for DIAMOND and an assessment of
the requirements of the correction system.

1  INTRODUCTION
In a perfect machine, the vertical emittance is

determined by the synchrotron radiation opening angle,
with a value that is several orders of magnitude inferior
to the horizontal natural emittance.

However, in a real machine the vertical emittance is
determined by two factors:

1. The finite vertical dispersion generated in the
dipoles by horizontal dipolar field imperfections.

2. Coupling of the vertical and horizontal modes of
oscillation, generated by skew quad error and vertical
orbit displacement in the sextupoles.

In principle, these two processes are independent and
uncorrelated, and the final εy would be given by the sum
of the two contributions. We defined the emittance ratio
χ as:
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It can be show that the performance of a light source
is heavily influenced by the emittance ratio, and for small
values of χ, the brilliance Bn is:
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In order to have a high brilliance, the emittance ratio
χ, therefore the vertical emittance εy, should be as low as
possible.

2  VERTICAL DISPERSION
The existence of imperfections on the magnetic

lattice will induce a finite vertical dispersion along the
lattice and change the values of the horizontal
dispersion.

The emittance ratio would be given by:
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where x y,  is defined as:
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It should be noted that both the vertical and the
horizontal emittances are affected and modified by the
effect of the errors. The correction system would
compensate those errors, and the final relative change
would be much smaller in the horizontal plane.

It is difficult to give an analytical formula for the
emittance ratio in a machine with correction system. In
[1] it is given a possible approach. However, an easier
solution would be through simulation.

For a bare machine with dipolar errors, it is possible
to give an approximate value of the vertical emittance,
and the results would give us an estimate of the
requirements for the correction system. Following the
results from [2], the first step is to evaluate the vertical
dispersion. The equation for it can be written, in
normalised co-ordinates, as:
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where we have drop the y subindex to simplify the
notation. F(φ) is the driving function associated to the
magnetic imperfections and η is the normalised
dispersion:
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The previous equation has the following solution:
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The rms value at a point s0 would be given by:
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If we make the usual assumptions:
• The different errors are uncorrelated.
• The phase advance between errors is random-like,

so we can change the cos[∆µ] for the average value 1/2.
We can change the integral for a sum over the different
elements, this last equation can be written as:

( ) ( )
( )

D s
s

Q
F Lj j

j
j0

2 0
2

2 2

4

1

2
= ∑

β
π

β
sin

(9)

and from this last expression ,
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Using the definition of εy:
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We can find now the contribution of each kind of
errors to the vertical emittance. The generating function
F for the different types of errors is [2]:

a) Dipole rotation error ∆θ, F= ∆θ/ρ.
b) Quad rotation error ∆θ, F= K1Dx∆θ.
c) Vertical quad displacement ∆z, F= K1∆z.
d) Vertical sextupole displacement ∆z, F=K2Dx∆z.

where ∆θ and ∆z are the rms values of the errors.

The value of D2 / β for each one of previous errors

is:
a) Dipole rotation error:
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b) Quad rotation error:
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c) Vertical quad displacement:

( ) ( )D

Q
K L zj j j

j

2

2 1

2 21

8β π
β= ∑

sin , ∆ (14)

d) Vertical sextupole displacement:
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3  LINEAR COUPLING
The other important phenomenon that affects the

emittance ratio is the linear coupling of the oscillations
in the two transversal planes. Assuming that only the
difference resonance Qx-Qy=n contributes to the
coupling, the emittance ratio is given by:
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where κ is the coupling coefficient
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and ∆ is the fractional part of Qx-Qy. Ks is the skew
quadrupole component around the ring. The two
principal sources of it are rotation of the quads around
the s axis and misalignments of the sextupoles.

Making similar assumptions than in the previous
case, we can write <κ2> as
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The two errors that would excite the resonance have
the following skew quadrupole component [2]

a) Rotation of the quadrupoles around the s axis:
Ks=2K1∆θ

b) Vertical orbit displacement in sextupoles: Ks=K2∆z.
where again ∆θ and ∆z are the rms values of the errors.

4  RESULTS FOR DIAMOND
A description of the lattice for DIAMOND and of the

correction system can be found in [3]. Figure 1 shows
the optical functions for a quarter of the lattice. We
assume the following values (rms) for the different types
of errors:

a) Transverse misalignment of magnets ∆x,y=0.1 mm
b) Roll angle misalignment of the dipoles ∆θ=5×10-4

rad
c) Field imperfections in the dipoles ∆B/B0=5×10 -4

d) Roll angle misalignment of the quadrupoles (skew
quad error) ∆θ=5×10 -4 rad

4.1. Machine with the correction system

When we compensate the dipolar errors with the
correction system, it is difficult to give an algebraic
expression for the emittance ratio. We will use
simulation programs (MAD [4] and COUPXY [5]), to
simulate the effect of the errors and correction system.
The correction system is assumed to correct the orbit up
to 0.3 mm. The first contribution is due to the vertical



dispersion. The rms value of the vertical dispersion in
the dipoles when the correction system is in place has
been found to be of the order of 0.025 cm. This value
has been obtained through simulation with MAD for 100
sample machines. The values of the optical functions in
the dipoles are:

βx = 1.7 m βy = 27 m
 <Dx> = 0.07 m <Dy> = 0.025 m

And the contribution to the emittance ratio has been
found of χ ~ 0.8 %

For the linear coupling, we can give and analytical
estimation. In the case of the coupling due to skew
quadrupole errors, if we substitute the values of the
optical functions and the strength of the quadrupoles, we
found:

<κ2>=214.5 ∆θ2 = 5.4×10-5

χ ~ 0.63 %
In the case of the contribution to the coupling due to

vertical orbit displacement on the sextupole, the closed
orbit displacement has been found of 0.3 mm, and the
coupling coefficient and the emittance ratio:

<κ2>=3575.1 ∆z2 = 3.58×10-4

χ ~ 0.42 %
If we add this three contributions, the total value of

the emittance ratio that we find is χ ~ 2 %

4.2. Simulation

We have used MAD and COUPXY to evaluate the effect
of the errors and of the correction system on the machine
and to calculate the emittance ratio. We have simulate
the effect of the errors for 100 sample machines.

The results for the emittance ratio found are:
χ (MAD) ~ 2.8 %

χ (COUPXY) ~ 2.7 %

5  CONCLUSIONS
The present correction system brings the emittance

ratio to values of the order of the 3%. This can be
improved with a more aggressive correction system and
a less pessimistic estimation of the errors of position and
angle of the magnets. It should be possible to reach
values near the 1% coupling, as achieved in other
sources.
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Figure 1: Optical functions for a quarter of DIAMOND.


