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Abstract

A beam-based diagnostic method with orbit bumpshas been
applied to measure the strength error of each quadrupolein-
dividualy in the TRISTAN main ring. A pair of corrector
dipolesisexcited to produce abump orbit sharply localized
at atarget quadrupole. By analyzing aleakage orbit outside
the bump, the strength error of the target quadrupole can be
estimated. Experimenta results and discussions on accu-
racy of the measurement are reported.

1 INTRODUCTION

L attice design has been getting more and more complicated
inhigh luminosity collidersand low emittance light sources.
In such machines, even small errors of machine compo-
nents may significantly degradetheir ultimate performance.
In order to achieve high performance, beam-based diag-
nostics of machine errors is really important, as well as
careful quality control of hardware components. If lattice
errors are detected, it is necessary to find which magnets
have error fields and/or misalignments. We have applied
a beam-based diagnostic method with orbit bumps to mea-
sure strength errors of quadrupoles and misalignments of
sextupoles in the TRISTAN main ring. We call it the "x-
bump” method because orbit bump made with two correc-
tor magnets is localized in a short section with & betatron
phase advance. This paper focuses on the measurement of
quadrupol e strength errors. The measurement of misalign-
mentswill be described el sewhere in these proceedings[1].

2 THEORETICAL FOUNDATION OF 7
BUMP METHOD

In the w-bump method, a pair of kicks are given at point-
1 and point-2 with kick angles of 6#; and 6, respectively.
The bump orbit can be locally closed by choosing theratio
of kick angles when the (1,2) e ement of the transfer matrix
from point-1to point-2iszero, in other words, the betatron
phase advanceis . A leakage orbit will arise around aring
if there existsafocusing-force error and/or akick-angle er-
ror. Asexplained in the following, since these two kinds of
errors contributeto aleakage orbit orthogonally, they can be
determined individually from the measured |eakage orbit.

The change of theequilibriumorbit £, outsidethe second
bump magnet located at point-2is given by,

52 = 6_; + T1|- (6_; + Rres£2> 3 (1)

where R, isthe residua revolution matrix from point-2
to point-1 outside of the bump and can be written explicitly
using the Twiss parameters of theideal opticsand its phase
advance per turng. Ty isthetransfer matrix from point-1
to point-2 inside the bump and we express deviation of T,
using theideal transfer matrix T as

T1r = T,? + Terror . (2)

T? isthe idea transfer matrix where the (1,2) element is
zero and other elements can be expressed using the Twiss
parameters of the ideal optics. The focusing force error is
described by the second term of Eq.(2) and there are three
degrees of freedom, namely a, b and d, to satisfy the sym-
plectic condition of T.
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where B0, a1o and Bqo, aso are Twiss parameters of the
ideal opticsat point-1 and point-2, respectively.

Now we solve Eq.(1) for Z5 to get thel eakage bump-orbit
produced by a pair of kicks 8, at point-2 and 6, at point-1.

Gy = (I — Ty Ryes)™" [( 902 >+T,r < 901 >] @)

The amplitude of the leakage orbit is defined by its
Courant-Snyder invariant,

Wcod :X;XZa (5)

where X, isaorbitin the normal coordinate as given by
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By requiring the derivative of Eq.(5) with respect to 6, to
be zero and by solving this differentia equation for 8,, we
get the value of 8y, that minimizes the amplitude of the
leakage orbit for kick angle 8, at point-1.

In case of an ideal = section, 03, takes asimple form
Eq.(7) and thereis no leakage orbit outside the bump.
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If theopticsisnot theideal one, then X’} takesfinitevalue
even with an optimum kick of 82,,,;,. Thisorbit should be
considered astheleakage orbit generated by the opticserror
fzb. On the other hand, the leakage orbit introduced by the
error Kick X5 is given by substituting 82 = 02/min(1 + 6)
into Eq.(4). Here é representsarelativekick error. Thusthe
leakage orbit is divided into two components,

Xs = Xop+ Xos. (8)

When b is zero, fzb becomes zero even if a and d arefi-
nite and the reverseisalso true. So in view point of gener-
ation of leskage orbit, b represents the optics error and can
be used to normalize fzb. In the limit of vanishing optics
error, X 25 hormalized by b becomes,

X /TS
sz = §10{1,—cot(%)}61. (9)
When the opticsisidea, normalized ng becomes,
& _ V/Buo{l tan(%)} (10)

= 1.
6 &10 — X320 + 2 tan(%)

In summary, theleakage orbit isdivided into two compo-
nents and linearized in terms of the errors of the optics and
thekick. By takingtheinner product of Egs.(9) and (10), we
know that these two terms are orthogonal and can be distin-
guished from each other by analyzing the phase and ampli-
tude of the leakage orbit outside the bump.

3 MEASUREMENTSIN THE TRISTAN
MAIN RING

The lattice of the TRISTAN main ring is made up of collid-
ing insertions, rf sections, dispersion suppressors, arcs and
wiggler sections. The arcs consist of conventional FODO
cells whose phase advance was set to be «/2 during this
study. The «/2 norma cells are suitable to the = bump
study. We can easily make = bumps by giving the same ex-
citation to two correctors at the identical position in every
second cell. Although the bump covers four quadrupoles,
the leakage orbit is sengitive to the strength error of the
quadrupole located at the peak of the bump. The sensitiv-
ity is proportional to the square of the bump height and is
higher at the target quadrupole by a factor of 10. Then we
can almost individually estimate thefield error of the target
quadrupol e per bump. For the measurement of quadrupoles
in straight sections, we prepared specia opticsto adjust the
phase difference between steeringsto . In this case, the
kick angleswere chosen as Eq.( 7).

Out of 400 quadrupolesin the ring, 220 were measured;
76 QF sand 80 QD’s in the arcs and 64 in the straight sec-
tions. Quadrupoles in the dispersion suppressors and in
the wiggler sections remain unmeasured sinceit isdifficult
to arrange the optics to easily create = bumps. When we
formed bumps at the quadrupoles in the arcs, we turned
off the sextupoles so that we can eiminate their effects.
Although the stored beam current was limited to less than
100 p A because of no chromaticity correction, our position
monitors have sufficient sengitivity.
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Figure 1: Relative-strength errors of quadrupoles; @) QF's,
b) QD’s, and c) quadrupolesin the straight sections.

The closed orbit around thering is measured by 392 posi-
tion monitors attached to quadrupoles. We measured three
sequentia orbit datafor one bump; 1) bump off (OrbitA), 2)
bump on (OrbitB), and 3) bump off (OrbitC), to check the
orbit drift during measurements. When we observed signifi-
cant difference between Orbit A and C, weregjected thedata.
The leakage orbit to be analyzed was obtained by OrbitB-
OrbitC or OrbitB-OrhitA. The measurements of horizontal-
focusing(-defocusing) quadrupol es were done by horizon-
tal (vertical) bumps. The bump height applied wastypically
10mm.

In data analysis, the leakage orbit was corrected by two
kindsof correctors; thevirtua thin steering at theedgeof the
target quadrupol e and one of the two steerings employed to
make a bump. All calculations concerning the dataanalysis
were done by the code SAD developed at KEK [2]. From
thekick angles of these correctors, 84,44 and é,;, we can es-
timatethestrength error of thetarget quadrupoleand theim-
bal ance of the two steerings. 8.4 isrelated to the strength
error AK by 84uqq = [ AK(s)z(s)ds wherez isthebump
height. Inthisstudy, 84...4 Was of the order of several prad.

Figure 1 shows the distributionsof the relative strength
errorsof the quadrupoles. The QF s(QD’s) arefed by asin-
glepower supply. The standard deviationsof the strength er-



rorsof QF sand QD’sare5.7x 10~ *and 5.9 x 10~*, respec-
tively, which are consistent with the observation from the
field measurement done before the installation [3]. Large
errors were observed in final quadrupoles in the colliding
insertions. Thisis because we measured these quadrupol es
at much lower excitation than during usua operation. At
the usual excitation, the errors of these quadrupol es became
similar to the othersin the straight sections.

4 PRECISION OF THE MEASUREMENT

In most cases, we applied only one bump for onequadrupole
because of the limited machine time. However, amorere-
liable way isto do the =-bump measurement several times
for each quadrupol e by changing the bump height, because
it alows to correctly estimate the strength errors of the
guadrupole, even with some nonlinearities in the lattice.
Thiswas done for afew quadrupoles of different types.

In the case of QF's, thiskind of measurementsis proved
to be essential because thekick isnot linearly dependent on
the bump height as shown in Fig. 2. One possible source of
the nonlinearity is the remnant field of a sextupole placed
near thetarget quadrupol e. We estimated theintegrated sex-
tupolefieldtobeks srrem = 0.039 by apolynomial fitting,
which is not far from the result of the field measurement (
k2, sFrem = 0.029 and k2 sprem = 0.039). We can extract
the quadrupol e strength error by taking a linear component
in thefitting. Figure 1a) showsthe data after subtraction of
the sextupol e effect assuming k2, sprem = 0.029.
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Figure 2: The error kick by a QF vs. the horizontal bump
height.

In the case of QD’s, the datais sufficiently linear in the
bump height as shown in Fig. 3. The vertical bump orbit at
asextupole producesakick proportional to the bump height
Y8SAYsp = k2,5DremTmisy, Wherez,,;, isthehorizontal
misalignment of the sextupole. This effect can not be sep-
arated from a kick by the strength error of the quadrupole
because of itslinearity. If z,,;s = Imm and y = 10mm,
Ayl p amounts to 0.4urad, which introduces 20% unce-
tainty in the estimation of a quadrupolekick.

In order to estimate practically the statistical accuracy of
our measurement, we analyzed the leakage orbit without
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Figure 3: The error kick by a QD vs. the vertical bump
height.

bumps by the same procedure as with bumps and obtai ned
the fake kick due to the quadrupole strength error. By 55
sampl es, we estimated the accuracy to be 0.2urad, whichis
sufficiently small compared to typical kicks by quadrupoles.
InFigs. 2and 3, theerror bars show the difference between
two redundant data of OrbitB-OrbitA and OrbitB-OrbitC.
In most cases in the figures, the error bars are consistent
with 0.2urad. Data points with larger error bars are con-
sidered to be affected by the orbit drift. The fitting results
inFigs. 2and 3are Ak/k = (2.250 4 0.063) x 10~2 and
Ak/k = (1.118 4 0.036) x 10~2, respectively.

5 CONCLUSIONS

The strength errors of quadrupol es were successfully mea
sured by the w-bump method in the TRISTAN Main Ring.
The relative strength errors of the order of 10~* were de-
tected with statistical accuracy of the order of 10~*by eim-
inating bad data affected by orbit drifts.
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