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Abstract

A beam-based diagnostic method with orbit bumps has been
applied to measure the strength error of each quadrupole in-
dividually in the TRISTAN main ring. A pair of corrector
dipoles is excited to produce a bump orbit sharply localized
at a target quadrupole. By analyzing a leakage orbit outside
the bump, the strength error of the target quadrupole can be
estimated. Experimental results and discussions on accu-
racy of the measurement are reported.

1 INTRODUCTION

Lattice design has been getting more and more complicated
in high luminositycolliders and low emittance light sources.
In such machines, even small errors of machine compo-
nents may significantly degrade their ultimate performance.
In order to achieve high performance, beam-based diag-
nostics of machine errors is really important, as well as
careful quality control of hardware components. If lattice
errors are detected, it is necessary to find which magnets
have error fields and/or misalignments. We have applied
a beam-based diagnostic method with orbit bumps to mea-
sure strength errors of quadrupoles and misalignments of
sextupoles in the TRISTAN main ring. We call it the ”�-
bump” method because orbit bump made with two correc-
tor magnets is localized in a short section with � betatron
phase advance. This paper focuses on the measurement of
quadrupole strength errors. The measurement of misalign-
ments will be described elsewhere in these proceedings [1].

2 THEORETICAL FOUNDATION OF �

BUMP METHOD

In the �-bump method, a pair of kicks are given at point-
1 and point-2 with kick angles of �1 and �2, respectively.
The bump orbit can be locally closed by choosing the ratio
of kick angles when the (1,2) element of the transfer matrix
from point-1 to point-2 is zero, in other words, the betatron
phase advance is �. A leakage orbit will arise around a ring
if there exists a focusing-force error and/or a kick-angle er-
ror. As explained in the following, since these two kinds of
errors contribute to a leakage orbit orthogonally, they can be
determined individually from the measured leakage orbit.

The change of the equilibriumorbit ~x2 outside the second
bump magnet located at point-2 is given by,

~x2 = ~�2 + T�

�
~�1 +Rres~x2

�
; (1)

where Rres is the residual revolution matrix from point-2
to point-1 outside of the bump and can be written explicitly
using the Twiss parameters of the ideal optics and its phase
advance per turn  0. T� is the transfer matrix from point-1
to point-2 inside the bump and we express deviation of T�
using the ideal transfer matrix T 0

� as

T� = T 0
� + Terror : (2)

T 0
� is the ideal transfer matrix where the (1,2) element is

zero and other elements can be expressed using the Twiss
parameters of the ideal optics. The focusing force error is
described by the second term of Eq.(2) and there are three
degrees of freedom, namely a, b and d, to satisfy the sym-
plectic condition of T�.
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where �10, �10 and �20, �20 are Twiss parameters of the
ideal optics at point-1 and point-2, respectively.

Now we solve Eq.(1) for ~x2 to get the leakage bump-orbit
produced by a pair of kicks �2 at point-2 and �1 at point-1.
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The amplitude of the leakage orbit is defined by its
Courant-Snyder invariant,

Wcod = ~X
y
2
~X2; (5)

where ~X2 is a orbit in the normal coordinate as given by
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By requiring the derivative of Eq.(5) with respect to �2 to
be zero and by solving this differential equation for �2, we
get the value of �2min that minimizes the amplitude of the
leakage orbit for kick angle �1 at point-1.

In case of an ideal � section, �2min takes a simple form
Eq.(7) and there is no leakage orbit outside the bump.



�2min =

s
�10

�20
�1: (7)

If the optics is not the ideal one, then ~X2 takes finite value
even with an optimum kick of �2min. This orbit should be
considered as the leakage orbit generated by the optics error
~X2b. On the other hand, the leakage orbit introduced by the
error kick ~X2� is given by substituting �2 = �2min(1 + �)

into Eq.(4). Here � represents a relative kick error. Thus the
leakage orbit is divided into two components,

~X2 = ~X2b + ~X2�: (8)

When b is zero, ~X2b becomes zero even if a and d are fi-
nite and the reverse is also true. So in view point of gener-
ation of leakage orbit, b represents the optics error and can
be used to normalize ~X2b. In the limit of vanishing optics
error, ~X2b normalized by b becomes,

~X2b

b
=

p
�10

2
f1;� cot(

 0

2
)g�1: (9)

When the optics is ideal, normalized ~X2� becomes,

~X2�

�
=

p
�10 f1; tan( 02 )g

�10 � �20 + 2 tan( 0
2
)
�1: (10)

In summary, the leakage orbit is divided into two compo-
nents and linearized in terms of the errors of the optics and
the kick. By taking the inner product of Eqs.(9) and (10), we
know that these two terms are orthogonal and can be distin-
guished from each other by analyzing the phase and ampli-
tude of the leakage orbit outside the bump.

3 MEASUREMENTS IN THE TRISTAN
MAIN RING

The lattice of the TRISTAN main ring is made up of collid-
ing insertions, rf sections, dispersion suppressors, arcs and
wiggler sections. The arcs consist of conventional FODO
cells whose phase advance was set to be �=2 during this
study. The �=2 normal cells are suitable to the � bump
study. We can easily make � bumps by giving the same ex-
citation to two correctors at the identical position in every
second cell. Although the bump covers four quadrupoles,
the leakage orbit is sensitive to the strength error of the
quadrupole located at the peak of the bump. The sensitiv-
ity is proportional to the square of the bump height and is
higher at the target quadrupole by a factor of 10. Then we
can almost individually estimate the field error of the target
quadrupole per bump. For the measurement of quadrupoles
in straight sections, we prepared special optics to adjust the
phase difference between steerings to �. In this case, the
kick angles were chosen as Eq.( 7).

Out of 400 quadrupoles in the ring, 220 were measured;
76 QF’s and 80 QD’s in the arcs and 64 in the straight sec-
tions. Quadrupoles in the dispersion suppressors and in
the wiggler sections remain unmeasured since it is difficult
to arrange the optics to easily create � bumps. When we
formed bumps at the quadrupoles in the arcs, we turned
off the sextupoles so that we can eliminate their effects.
Although the stored beam current was limited to less than
100 �A because of no chromaticity correction, our position
monitors have sufficient sensitivity.
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Figure 1: Relative-strength errors of quadrupoles; a) QF’s,
b) QD’s, and c) quadrupoles in the straight sections.

The closed orbit around the ring is measured by 392 posi-
tion monitors attached to quadrupoles. We measured three
sequential orbit data for one bump; 1) bump off (OrbitA), 2)
bump on (OrbitB), and 3) bump off (OrbitC), to check the
orbit drift during measurements. When we observed signifi-
cant difference between Orbit A and C, we rejected the data.
The leakage orbit to be analyzed was obtained by OrbitB-
OrbitC or OrbitB-OrbitA. The measurements of horizontal-
focusing(-defocusing) quadrupoles were done by horizon-
tal (vertical) bumps. The bump height applied was typically
10mm.

In data analysis, the leakage orbit was corrected by two
kinds of correctors; the virtual thin steering at the edge of the
target quadrupole and one of the two steerings employed to
make a bump. All calculations concerning the data analysis
were done by the code SAD developed at KEK [2]. From
the kick angles of these correctors, �quad and �st, we can es-
timate the strength error of the target quadrupole and the im-
balance of the two steerings. �quad is related to the strength
error�K by �quad =

R
�K(s)x(s)dswhere x is the bump

height. In this study, �quad was of the order of several �rad.
Figure 1 shows the distributions of the relative strength

errors of the quadrupoles. The QF’s (QD’s) are fed by a sin-
gle power supply. The standard deviationsof the strength er-



rors of QF’s and QD’s are 5:7�10�4 and 5:9�10�4, respec-
tively, which are consistent with the observation from the
field measurement done before the installation [3]. Large
errors were observed in final quadrupoles in the colliding
insertions. This is because we measured these quadrupoles
at much lower excitation than during usual operation. At
the usual excitation, the errors of these quadrupoles became
similar to the others in the straight sections.

4 PRECISION OF THE MEASUREMENT

In most cases, we applied only one bump for one quadrupole
because of the limited machine time. However, a more re-
liable way is to do the �-bump measurement several times
for each quadrupole by changing the bump height, because
it allows to correctly estimate the strength errors of the
quadrupole, even with some nonlinearities in the lattice.
This was done for a few quadrupoles of different types.

In the case of QF’s, this kind of measurements is proved
to be essential because the kick is not linearly dependent on
the bump height as shown in Fig. 2. One possible source of
the nonlinearity is the remnant field of a sextupole placed
near the target quadrupole. We estimated the integrated sex-
tupole field to be k2;SFrem = 0:039 by a polynomial fitting,
which is not far from the result of the field measurement (
k2;SFrem = 0:029 and k2;SDrem = 0:039). We can extract
the quadrupole strength error by taking a linear component
in the fitting. Figure 1a) shows the data after subtraction of
the sextupole effect assuming k2;SFrem = 0:029.
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Figure 2: The error kick by a QF vs. the horizontal bump
height.

In the case of QD’s, the data is sufficiently linear in the
bump height as shown in Fig. 3. The vertical bump orbit at
a sextupole produces a kick proportional to the bump height
y as �y0SD = k2;SDremxmisy, where xmis is the horizontal
misalignment of the sextupole. This effect can not be sep-
arated from a kick by the strength error of the quadrupole
because of its linearity. If xmis = 1mm and y = 10mm,
�y0SD amounts to 0:4�rad, which introduces 20% uncer-
tainty in the estimation of a quadrupole kick.

In order to estimate practically the statistical accuracy of
our measurement, we analyzed the leakage orbit without
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Figure 3: The error kick by a QD vs. the vertical bump
height.

bumps by the same procedure as with bumps and obtained
the fake kick due to the quadrupole strength error. By 55
samples, we estimated the accuracy to be 0:2�rad, which is
sufficiently small compared to typical kicks by quadrupoles.
In Figs. 2 and 3, the error bars show the difference between
two redundant data of OrbitB-OrbitA and OrbitB-OrbitC.
In most cases in the figures, the error bars are consistent
with 0:2�rad. Data points with larger error bars are con-
sidered to be affected by the orbit drift. The fitting results
in Figs. 2 and 3 are �k=k = (2:250� 0:063)� 10�3 and
�k=k = (1:118� 0:036)� 10�3, respectively.

5 CONCLUSIONS

The strength errors of quadrupoles were successfully mea-
sured by the �-bump method in the TRISTAN Main Ring.
The relative strength errors of the order of 10�4 were de-
tected with statistical accuracy of the order of 10�5by elim-
inating bad data affected by orbit drifts.
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