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Abstract

In a circular accelerator, a horizontal-vertical coupling can
occur just by a geometrical reason without any explicit cou-
pling elements, skew quadrupole magnets etc. The cou-
pling is represented by a rotation (SO(2)) between hori-
zontal and vertical coordinates (and momenta). The angle
is called thetwist angle. It comes from the global structure
of the reference orbit (' closed orbit without errors) and
is related to the non-integrability of the parallel transport.
We give an analytic expression of the twist, and an example
of its computation. We also discuss some simple dynami-
cal consequences of the twist related to tune and emittance
changes.

1 INTRODUCTION

The betatron coordinates are defined with respect to the
closed orbit. The closed orbit closes after one turn. But
the betatron coordinates system does not necessarily come
back to the original one after one turn: the horizontal (x)
and vertical (y) axes can be rotated by an angleΦ (twist
angle). This angle is unique and intrinsic to a given con-
figuration of the reference orbit. This effect, related to the
non integrability of the coordinate systems has been well
known since C.F. Gauss. The presence of such an angle
was pointed out recently[1] in connection with the accel-
erators and further elucidated in Ref.[2]. In this paper, we
will discuss this effect on the betatron oscillations.

We will defineΦ in the next section. Then in Sect.3, we
give a formula for it. Sect.4 is devoted to the brief study of
its dynamical consequences. The last section is devoted to
general discussions.

We assume for simplicity that the reference orbit is
composed by smoothly-joining planar circular arcs (corre-
sponding to bending magnets) and straight lines.

2 GLOBAL COORDINATE SYSTEM
BASED ON A PARALLEL TRANSPORT

Let the reference orbit be described byr(s), wheres is the
arc length: |dr| = |ds|. We introduce the unit tangent
vectorez(s) = ṙ(s). LettingΩ = ez × ėz, one has:

ėz = Ω× ez. (1)
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Now, at a certain point in the ring, says = 0, we define two
vectorsex(0) andey(0) perpendicular toez(0) in a way
that (ex(0), ey(0), ez(0)) forms a right-handed orthonor-
mal basis. We can defineex(s) andey(s) by the parallel
transport equation[3]:

ėi = Ω× ei, (i = x, y, z), (2)

with the initial condition ats = 0. We can define the cur-
vature radiiρx andρy asΩ = −ey/ρx + ex/ρy, so that
Eq. (2) can be put in a form: ėx

ėy
ėz

 =

 0 0 ρ−1
x

0 0 ρ−1
y

−ρ−1
x −ρ−1

y 0

 ex
ey
ez

 . (3)

Its integration defines the coordinate system:
(ex(s), ey(s), ez(s))

t = F (s, 0)(ex(0), ey(0), ez(0))t.
Here F (s, 0) = T

∫ s
0 expA(ρx(s), ρy(s))ds, where T

stands for the time ordered product andA is the matrix
in Eq.(3). With (ex, ey) thus defined, we can define the
coordinate system for alls ∈ [0, C], whereC is the ring
circumference. Since the orbit should be smooth, we have
ez(C) = ez(0), implying

F (C, 0) =

 cos Φ sin Φ 0
− sin Φ cos Φ 0

0 0 1

 . (4)

Wedefinethe twist angleΦ by this equation. Now,F (C, 0)
can be expressed as a product of transformations for mag-
nets: fnfn−1 · · · f2f1, wherefi stands for the transport
through thei-th magnet:

fi = exp
{
A(ρix, ρ

i
y)li
}
. (5)

Hereli is the length of the reference orbit in it.
In Fig.1, we have shown an example of the parallel trans-

port and the twist.

3 THE TWIST ANGLE AS THE
NON-INTEGRABILITY

The existence of the twist angleΦ is related to the geo-
metrical nature of the reference orbit. The functionez(s)
defines a map from the reference orbit,[0, C], to a unit sur-
faceS2, making a closed curveΓ on it. From Eq.(1),Γ is
(piecewisely) geodesic onS2.

At each point onΓ, we can attachex(s) (on its tangential
plane). The twistΦ is then the angle betweenex(0) and



Figure 1: The parallel transport and the twist. The starting
point s = 0 is indicated by•. The magnets are numbered.
The magnet number 6 represents a long planar arc. The
ex(0) (dotted arrow) andey(0) (solid arrow) are defind ar-
bitrarily at s = 0 and they are transported parallely along
the reference orbit. After they come back tos = 0, they no-
tice that they are tilted by an angleΦ (π/2 in this example).

ex(C). Let us define an angleφ(s) betweenex(s) and the
tangent vector ofΓ. It is constant along each geodesic. See
Fig.2, which corresponds to the configuration in Fig.1. At
each corner (denoted by Q, R, etc), we haveφ → φ − αi,
whereαi is the exterior angle of the corner. After one turn,
the tangent vector ofΓ itself has made2π rotation. Thus,
we have

Φ = 2π −
∑
i

αi = the solid angle subtended byΓ. (6)

This is Gauss-Bonnet theorem[4]. The solid angle is de-
fined with its orientation. Note thatΦ is defined inmod 2π.
This angle reflects the non-integrability ofex on Γ and is
an example of the holonomy group onS2. Note thatΦ does
not depend on the way of defining the coordinate frame. It
is a physical object. It is easily seen thatΦ does not change
when we start from a point different from (s = 0). An “ad-
ditional” rotation should be applied somewhere in the ring
so that the one turn matrixF (C, 0) becomes the identity
matrix.

4 DYNAMICAL EFFECTS

WhenΦ exists, the(x, y) coordinates should be adjusted at
s = 0:(

x
y

)
0+

=

(
cos Φ sin Φ
− sin Φ cos Φ

)(
x
y

)
0−

. (7)

This should be applied no matter what dynamics is con-
cerned, linear and nonlinear betatron oscillations, polar-
izations, coherent dynamics etc. Here, we study a sim-
ple case with linear betatron oscillation. Assume that the
bending and quadrupole magnets are chosen in such a way
that theρ’s are either horizontal or vertical with respect
to (ex(s), ey(s)). Then the transfer matrix is always in a
piecewise diagonal form. The one turn matrix should be in
the form

M(Φ) = R(Φ)diag(mx,my), (8)

Figure 2: The geodesic curveΓ made byez onS2. Theex
is attached to the each point onΓ. The curve corresponds
to Fig.1): Ats = 0, theez is at P in this figure andex (the
dotted arrow) is parallel to the “equator”. At the magnet
-1, ez moves to Q withex parallely transported. In the
same way, it passes the magnets-2 and -3. Thenez comes
back to P. It makes a round trip either after the magnets-
4 and -5, from P to S (no contribution toΦ), or after the
magnet-6, around the equator (add2π to Φ.) In the end, at
P, ex is tilted by Φ = π/2. The solid angle isπ/2 + 2π
(≡ Φ, mod 2π).

whereR is the rotation in Eq.(7),m’s are2× 2 symplectic
matrices. As an example, let us assume

mx,y =

(
cos 2πνx,y βx,y sin 2πνx,y

−β−1
x,y sin 2πνx,y cos 2πνx,y

)
, (9)

as a generalization of the M¨obius ring[5], which corre-
sponds toΦ = π/2. By the standard technique[6], one can
calculate the eigenvalues ofM(0). The unstable region in
the (νx, νy) plane is shown in Fig. 3 forΦ = .02 × 2π
and(βx, βy) = (0.33, 0.01)m. It is rather surprising that a
smallΦ gives rise to a large unstable region.

Let us discuss the equilibrium beam envelope[7] for an
electron ring. Following the treatment of radiation made in
Ref.[8], the equilibrium envelope matrixΣij =< ξiξj >,

Figure 3: The unstable region in(νx, νy) plane. Param-
eters: Φ = 0.02 × 2π, (βx, βy) = (0.33, 0.01)m. The
vertical axis gives the growthrate-1.



with ξ = x, x′, y, y′, satisfies the equation:

Σ = λ MΣM t + (1− λ)ε0RBR
t, (10)

B = diag(βx, 1/βx, 0, 0). (11)

Hereλ is a constant<∼1 andε0 is the nominal equilibrium
emittance. We have assumed that the “vertical diffusion”
is ignorable compared to the “horizontal” one. At the equi-
librium, the emittance is computed as:

εx,y = Abs[Eigenvalues[JΣ]], (12)

whereJ is the4×4 symplectic metric. In Fig. 4 we plot the
emittances and the growthrate-1 (top) and the beam sizes
(bottom) vs. Φ for the same parameters of Fig. 3 . For
Φ ∈ [0.8, 1.1] ∪ [1.7, 2.3], the instability occurs.

Note that the instability pattern and the emittances are
identical when we make transformations(νx, νy)→ (νx +
1/2, νy + 1/2) or Φ→ Φ + π.

Figure 4: (Top) Emittances and growthrate-1 (dashed line),
(bottom)Σ11 (solid line), Σ13 (dashed line),Σ33 (dotted
line), as functions ofΦ for (νx, νy) = (0.2, 0.15) and
(βx, βy) = (0.33, 0.01)m. All are normalized byε0.

5 DISCUSSIONS

The main point of this paper was to point out the presence
of the intrinsicSO(2) rotation associated with the config-
uration of the reference orbit. The twist angleΦ is unique
for a given reference orbit and is a physical object which
one should include in tracking etc.

Here, it seems appropriate to discuss the “geometry”. Is
the origin ofΦ geometrical or dynamical? When the bend-
ing angleθ’s are small, we can also use a planar orbit as the
reference. In this case,Φ does not appear as the geomet-
rical effect of the reference orbit. The same x-y coupling,
however, will appear physically, nevertheless. This can be
thought of dynamical coupling because it comes from the
“Hamiltonian” but it can still be called geometrical because
it comes from the Minkowski nature of the space-time.

In this paper, we have discussed the simple dynamical
effects only. Further study is needed to clarify the effects
in nonlinear dynamics, polarization, coherent instabilities
and so on.
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A DISCONTINUITY OF
FRENET-SERRET TRIAD

The parallel transport is not the only way to define the co-
ordinates on the reference orbit. Here, we show howΦ
emerges when we use the Frenet-Serret triad (FST). FST
is definedlocally. On a straight line, FST is not defined
so that we define it by the parallel transport from the last
curve. If the osculating planes (x-direction, represented by
eFSx ) of the next and previous curves are not parallel, it
should exhibitabruptrotation[2].

Figure 5: Thex coordinates (arrows) according to the
Frenet-Serret triad for the same example of Fig.1.

Let us define the angle to adjusteFSx ’s between magnets
no.i andi+ 1 asδi:(

eFSx , eFSy
)t

(i+1)−
= R(δi)

(
eFSx , eFSy

)t
i+
. (13)

Note thateFSz is continuous everywhere and is identical
with ez. It is easily seen thatδi is identical withαi, the ex-
terior angle mentioned in Section 3. For example, in Fig.5,
we have(δ1, · · · , δ6) = (π/2, π/2,−π/2, π,−π/2, π/2).
By Eq.(6), we haveΦ = −

∑
i δi, (mod 2π), which is

consistent with Eq.(6).


