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Abstract Now, at a certain pointin the ring, say= 0, we define two
vectorse.(0) ande,(0) perpendicular tee,(0) in a way

In a circular accelerator, a horizontal-vertical coupling cay, ., (2(0), e, (0), e.(0)) forms a right-handed orthonor-
x Y y ¥z

occur just by a geometrical reason without anyexplicitcour:nal basis. We can define,(s) ande, (s) by the parallel
pling elements, skew quadrupole magnets etc. The co Y

pling is represented by a rotatio§@(2)) between hori- Hansport equation[3]:

zontal and vertical coordinates (and momenta). The angle & =Qxe;, (i=z,y,2), 2)
is called thewist angle. It comes from the global structure

of the reference orbit~¢ closed orbit without errors) and with the initial condition ats = 0. We can define the cur-
is related to the non-integrability of the parallel transportvature radiip, andp, as2 = —e,/p, + e;/py, SO that
We give an analytic expression of the twist, and an exampleg. (2) can be put in a form:

of its computation. We also discuss some simple dynami-

. —1

cal consequences of the twist related to tune and emittance( €= 0 0 Pz 1 €z

changes. €y | = 0 0 py ey |- (3
€ —P;1 —,02:1 0 €z

1 INTRODUCTION Its integration defines the coordinate system:
_ _ _ (ex(s),ey(s),ex(s))" = F(s,0)(es(0),e,(0),e.(0))"

The betatron coordinates are defined with respect to thgere F(s,0) = Tfos exp A(pz(s), py(s))ds, whereT
closed orbit. The closed orbit closes after one turn. Bujtands for the time ordered product addis the matrix
the betatron coordinates system does not necessarily cofeEq.(3). With (e, e,) thus defined, we can define the
back to the original one after one turn: the horizontgl ( coordinate system for all € [0, C], whereC is the ring
and vertical {) axes can be rotated by an angle(twist  circumference. Since the orbit should be smooth, we have
angle). This angle is unique and intrinsic to a given core, (C) = e.(0), implying
figuration of the reference orbit. This effect, related to the
non integrability of the coordinate systems has been well cos® sin® 0
known since C.F. Gauss. The presence of such an angle F(C,0)=| —sin® cos® 0 |. (4)
was pointed out recently[1] in connection with the accel- 0 0 1

erators and further elucidated in Ref.[2]. In this paper, we ' . . .
will discuss this effect on the betatron oscillations. Wedefinethe twist angleP by this equation. Now(C, 0)

We will define® in the next section. Then in Sect.3, we2" be expressed as a product of transformations for mag-

give a formula for it. Sect.4 is devoted to the brief study o ets: fufn—1:-- fofr, \{vherefi stands for the transport
. . C rough the-th magnet:
its dynamical consequences. The last section is devoted 10
general dlscussmns._ N N £ = exp {A(p;,p;)li} ) (5)
We assume for simplicity that the reference orbit is
composed by smoothly-joining planar circular arcs (corredlerel; is the length of the reference orbit in it.
sponding to bending magnets) and straight lines. In Fig.1, we have shown an example of the parallel trans-
port and the twist.

2 GLOBAL COORDINATE SYSTEM

BASED ON A PARALLEL TRANSPORT 3 THE TWIST ANGLE AS THE

NON-INTEGRABILITY

The existence of the twist angte is related to the geo-
metrical nature of the reference orbit. The functirfs)
defines a map from the reference orfiit,C], to a unit sur-
face 2, making a closed curvE on it. From Eq.(1)I" is
(piecewisely) geodesic of.

*On leave of absence from Dip. Fisica Teorica e S.M.S.A., Univ. of Ateach pointlorf,.we can attack,(s) (on its tangential
Salerno and I.N.F.N. Salerno, Italy plane). The twist is then the angle betweean.(0) and

Let the reference orbit be describedify), wheres is the
arc length:|dr| = |ds|. We introduce the unit tangent
vectore,(s) = r(s). LettingQ? = e, x é,, one has:

e, =0 xe,. (1)




Figure 1: The parallel transport and the twist. The starting

points = 0 is indicated bys. The magnets are numbered.Figure 2: The geodesic curfemade bye, on S2. Thee,
The magnet number 6 represents a long planar arc. TReattached to the each point dn The curve corresponds
e, (0) (dotted arrow) ane, (0) (solid arrow) are defind ar- to Fig.1): Ats = 0, thee, is at P in this figure and,, (the
bitrarily at s = 0 and they are transported parallely alon@jotted arrow) is parallel to the “equator”. At the magnet
the reference orbit. After they come backste- 0, theyno- .1 e, moves to Q withe, parallely transported. In the
tice that they are tilted by an angIE(ﬂ'/Q in this example). same way, it passes the magnets-z and -3. 'Egm‘[)mes
back to P. It makes a round trip either after the magnets-
4 and -5, from P to S (no contribution ), or after the
e.(C). Let us define an anglg(s) betweere,.(s) and the magnet-6, around the equator (atdto ®.) In the end, at
tangent vector of . It is constant along each geodesic. Se®, e is tilted by ® = 7/2. The solid angle isr/2 + 27
Fig.2, which corresponds to the configuration in Fig.1. A{= ®, mod 27).
each corner (denoted by Q, R, etc), we haver ¢ — a;,

whereq; is the exterior angle of the corner. After one turn, . o ’ )
the tangent vector df itself has mad@r rotation. Thus, WhereRis the rotationin Eq.(7)n’s are2 x 2 symplectic
we have matrices. As an example, let us assume

d =21 — Z a; = the solid angle subtended by (6) — ( cos 2.7ww By Sin 2715 4 ) )
i oY —Byy sin2muy,,  COS2myy ’

This is Gauss-Bonnet theorem[4]. The solid angle is de- o o _
fined with its orientation. Note that is defined innod 2x. @S @ generalization of the dbius ring[5], which corre-
This angle reflects the non-integrability of onT and is SPONds tob = /2. By the standard technique[6], one can
an example of the holonomy group 6R. Note thatb does calculate the e|gen_values M_(O). _The unstable region in
not depend on the way of defining the coordinate frame. if€ (vz, v,) plane is shown in Fig. 3 fo@ = .02 x 27
is a physical object. Itis easily seen tdatioes not change and(5z, 8y) = (0.33,0.01)m. Itis rather surprising that a
when we start from a point different from & 0). An“ad- Small® gives rise to a large unstable region.
ditional” rotation should be applied somewhere in the ring Let us discuss the equilibrium beam envelope[7] for an

so that the one turn matrik'(C, 0) becomes the identity electron ring. Following the treatment of radiation made in
matrix. Ref.[8], the equilibrium envelope matri®;; =< &§; >,

4 DYNAMICAL EFFECTS

When® exists, thegx, y) coordinates should be adjusted at
s=0:

T cos® sind T
=\ _¢no o . (7
Y Jos sin cos Y )

This should be applied no matter what dynamics is con-
cerned, linear and nonlinear betatron oscillations, polar-
izations, coherent dynamics etc. Here, we study a sim-
ple case with linear betatron oscillation. Assume that the
bending and quadrupole magnets are chosen in such a way
that thep’s are either horizontal or vertical with respect
to (ex(s), ey(s)). Then the transfer matrix is always in a
piecewise diagonal form. The one turn matrix should be iffigure 3: The unstable region {,,v,) plane. Param-
the form eters: ® = 0.02 x 2m, (B, 8y) = (0.33,0.01)m. The

M(®) = R(®)diag(m,, my), (8) vertical axis gives the growthrate-1.
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identical when we make transformatiops , v,) — (v, + A DISCONTINUITY OF

1/2,vy +1/2)0r® = & 4 7. FRENET-SERRET TRIAD

The parallel transport is not the only way to define the co-
' u ordinates on the reference orbit. Here, we show low
emerges when we use the Frenet-Serret triad (FST). FST
' is definedlocally. On a straight line, FST is not defined
0.5 1 1.5 2 2.5 3

so that we define it by the parallel transport from the last
curve. If the osculating planes-direction, represented by
el’S) of the next and previous curves are not parallel, it
should exhibiabruptrotation[2].

1 h’. 5 z :llfz._s 3

Figure 4: (Top) Emittances and growthrate-1 (dashed line
(bottom) X211 (solid line), 313 (dashed line).33 (dotted

line), as functions of® for (v,,v,) = (0.2,0.15) and
(Bz, By) = (0.33,0.01)m. All are normalized by,.

5 DISCUSSIONS

The main point of this paper was to point out the presenqggq re 5: Thes coordinates (arrows) according to the
of the intrinsicSO(2) rotation associated with the config- franet-Serret triad for the same example of Fig.1.

uration of the reference orbit. The twist and@ids unique

for a given reference orbit and is a physical object which | ot ;s define the angle to adjusis’

one should include in tracking etc. noi andi + 1 asé;:
Here, it seems appropriate to discuss the “geometry”. Is

the origin of® geometrical or dynamical? When the bend- (eFS eFS)t' =

ing anglef’s are small, we can also use a planar orbit as the A )

reference. In this cas& does not appear as the geometyote thate”

. ; ) FS'is continuous everywhere and is identical
rical effect of the reference orbit. The same x-y couplmqm,[h e.. Itis easily seen tha, is identical witha;, the ex-

however, will appear physically, nevertheless. This can t{%rior angle mentioned in Section 3. For example, in Fig.5,
thought of dynamical coupling because it comes from thﬁ/e have(s,,---,06) = (m/2,7/2, /2,7, —1/2,7/2).
“Hamiltonian” but it can still be called geometrical becausgy g (g), we haveb — — ’Z 5, (mozi Q’ﬁ), which is
it comes from the Minkowski nature of the space-time. consistent with Eq.(6). L
In this paper, we have discussed the simple dynamical
effects only. Further study is needed to clarify the effects
in nonlinear dynamics, polarization, coherent instabilities
and so on.

s between magnets

R(&) (eFS, efS) . (13)
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