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Abstract
Expressions for the tune shift of vertical betatron
oscillations versus their amplitude are obtained by using
Hamilton mechanics methods. Conditions of resonance
excitation are considered. Expressions to compute the
fringing field effects in the codes simulating beam
dynamics, and the appropriate coefficients for use in
practice are given. The fringing field effect on a
dynamic aperture is illustrated by the example of the
synchrotron radiation source ISI-800 designed in
Kharkov.

1 INTRODUCTION

In calculations of accelerator magnet lattices it is general
practice to take into account only effective lengths of
magnet elements and the linear tune shift due to fringing
field effects of dipole magnets. However, in low- and
medium- energy (hundreds of MeV for electrons)
accelerators higher-order edge effects may appear
essential and give rise to an increase in effective beam
emittance (luminosity), a decrease in the dynamic
aperture of the device (lifetime); they restrict the
application of inserts such as wigglers and undulators in
storage rings as synchrotron radiation sources.

2 CALCULATION OF DIPOLE-MAGNET
AND MULTIPOLE-LENS EDGE EFFECTS

2.1 The dipole magnet

The Hamiltonian of perturbed motion can be written in
the form [1]:
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where R is the average radius of machine; Bρ is the
magnetic rigidity; Ax,z,ϑ are the perturbing magnetic

vector potential components; p
x,z  are the transverse

momenta.
The perturbation is here represented by the fringing

(edge) field. Because of beam trajectory distortion at the
dipole magnet edges (fig.1) the fringing field is
described not by one potential component but by two
components which are written in the beam co-moving
coordinate frame as [2]
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where B0 is the field in the magnet gap;
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Fig.1. Equilibrium particle trajectories near the outer

magnet edge. s0 is the calculated origin of the fringing

field, sp is the mechanical boundary of the pole, se is the

effective boundary of the field.

After substituting (2) into (1), expanding in azimuthal
harmonics, averaging over quickly oscillating variables,
separating the particle amplitude and phase

( z a Ve c cz
i z= +ν ϑ . . , V being the vertical Floquet

function), Hamiltonian (1) can be presented to consist of
two parts: the resonant part that comprises the azimuthal
angular dependence, and the stabilizing part where this
dependence is absent. The analysis of the resonant part
shows that the fringing fields of the dipole magnet can
generate resonances of types ( )2 1j pz− =ν  and

( )2 1j pz x− + =ν ν , (j and p are the integers). From the

stabilizing part we derive the expression for the vertical
tune shift:
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where νx0,νz0 is the working betatron frequency of the

machine;
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βz(ϑm) is the amplitude function of vertical motion at

the m-th edge of magnet  (V Rz= β / 2 ); z0 is the

vertical displacement of orbit; r a ez z
i= ϕ .

The summation is made over all 2M edges of M
magnets. It is seen from expression (3) that the effect of
fringing fields can be reduced with the use of the edge
cutoff angle.

In practice, it is generally sufficient to be restricted to
the efficient cubic nonlinearity in field:
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In the thin-lens approximation,  expressions (4) are
equivalented  the form:
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The coefficients k1,2 can be calculated through the

use of the function  ( ) ( )( )b s f s0 1 1= +/ exp ,

( ( )f s a bs cs= + + +2 ... )[3] written for the outer edge of

the magnet. Figure 2 shows these coefficients as
functions of the gap g for the two-dimensional model of
the field. It is evident from the figure that with an
increasing length of the dipole-magnet fringing field the
linear vertical tune shift increases, while the nonlinear
one decreases.
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Fig.2.Edge coefficients versus dipole magnet gap. k1 -

solid line, k2 - dashed line.

2.2 The multipole lens

The magnetic potential components of multipole lenses
can be written in the form [4]:
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Here M is the number of lens pole pairs, n is the
multipole order. The imaginary part of expressions (6)
corresponds to normal lenses, the real part refers to skew
lenses.

After substituting (6) into (1) and appropriate
manipulations it becomes evident from the stabilizing
part of the Hamiltonian that the edge fields of
quadrupole lenses lead to square amplitude dependence
of betatron frequency. The betatron amplitude value is
given by difference between the products to the 3rd
power of the modulus of the Floquet function by its
derivatives with respect to inner- and outer- edge
azimuths. The analysis of the resonant part of the
Hamiltonian shows that the edge fields of quadrupole
lenses can excite resonances of type  2n kx zν , = ,

( )2n kx z± ± =ν ν . The edge fields of sextupole lenses

can excite resonances of types ( )2 1n kx+ =ν ,

( )2 1 2n n kx z+ + =ν ν , n n kx z x z1 2ν ν, ,+ = , n kx zν , = .

The stabilizing part of the perturbation Hamiltonian is
identically equal to zero for sextupole lenses.

2.3 Plane Insertion Devices (ID)

In the infinitely wide-lens approximation with a cosine
variation of the vertical field component along the
azimuth, we obtain the expression to describe the tune
shift under the action of plane ID fringing fields that
manifests itself to an accuracy of the squared amplitude
as:
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where Lu is the ID length; ku =2π/λ, (λ is the period);

az is the oscillation amplitude.

The corresponding expression to calculate the effects
considered in computer programs simulating the beam
dynamics is of the form
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where K ku= − −1 4 0π ρα/ , so, in the case of sector

magnets (α 0 0= ) we have K = −1 4π / , and for

rectangular magnets  (α ρ0 1= / ku ) K = −π / 4 .

For a fixed beam energy value the effect of ID fringing
fields can be compensated by means of edge cutoff
angles at each of the magnet units.

It has been demonstrated in [5] that the fringing fields
of dipole magnets and wigglers appreciably reduce the
dynamic aperture of the storage ring ISI-800 being
designed [6] in a vertical direction, yet it remains larger
geometric in this case.

3 EXPERIMENT

In the Kharkov storage ring N-100 the betatron
frequency of the beam was measured as a function of the
oscillation amplitude. The measurements were carried
out at a beam energy of 100 MeV and a stored current of
1µA.

Fig. 3 shows the measured and calculated squared
amplitude dependences of the vertical betatron
frequency.

Experiments were also made to investigate the
fringing field effect of N-100 dipole magnets on the
process of slow beam extraction in a vertical direction at

resonance νz=2/3. The specific feature of these

experiments is that the electrostatic septum was located
not at the maximum of the vertical amplitude function,
which is in the azimuth of the centre of the magnet. The
computer simulation of the extraction process has shown
that without considering the fringing field effect nearly
all the beam would be lost on vacuum chamber walls at
the maximum of the amplitude function. At the same
time, if the stabilizing effect of fringing fields is taken
into account, the slow extraction efficiency is computed
to be close to the experimental one  [7].

Fig.3. Vertical betatron frequency shift as a function of
squared amplitude. The circles (crosses) show the
experimental points at intersection of resonance on the

side of lower (higher) frequencies. 1.- calculation by
expression (5), 2.- experimental results.

REFERENCES

[1]. G. Guignard, A general treatment of resonances in
accelerators, CERN 78-11, 1978.
[2]. E.V.Bulyak, S.V.Efimov, Nonlinear effects due to
fringe fields of cyclic accelerator dipoles, Proc. EPAC-
90.
[3]. S.Kowalski, H.A.Enge. RAYTRACE , Cambridge,
Massachusetts 02139, USA, 1987, 73p.
[4]. E.V.Bulyak, S.V.Efimov, Fringing field effects of
multipole magnet lenses on transverse motion of charged
particles in cyclic accelerators (in Russian),
Zh.Tekh.Fiz., 57, n.7, 1987, p.p.1324-1327.
[5] S.Efimov, I.Karnaukhov, S.Kononenko, et al., The
dynamical aperture of ISI-800. Proc. PAC-95, Dallas,
1995.
[6] V.Androsov, V.Bar'yakhtar, E.Bulyak, et al.,
Synchrotron Radiation Complex ISI-800. Journal of
Electron Spectroscopy and Related Phenomena, 68,
1994, p.747-755.
[7] E.V.Bulyak, P.I.Gladkikh, S.V.Efimov, et al.,
Experiments on continuous electron beam extraction
from the storage ring N-100 (in Russian), Trudy IX
Vsesoyuznogo soveshchaniya po uskoritelyam (Dubna,
1984), v.2, p.p.250-253.


