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Abstract

Wakefields in a rectangular accelerating structure can be cal-
culated in time domain by directly solving Maxwell’s equa-
tions by a 3D numerical code. In this paper, however, we
will give analytical formulae to calculate the synchronous
modes’ loss factors in this kind of structures. From these
analytical formulae one can get the delta function wake-
fields. The relations between the loss factors (wakefields)
and the structure’s geometrical dimensions are well estab-
lished. These analytical expressions of loss factors can be
used also in a single rectangular resonant cavity.

1 INTRODUCTION

In this paper, we will consider the rectangular slow-wave
accelerating structure shown in Fig. 1. Since this is a 3D
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Figure 1: A rectangular accelerating structure

problem, usually, one has to resort to a 3D code to calcu-
late the wakefields excited inside the structure by a passing
charge. In ref. 1, the analytical formulae of the loss factors
and the wakefields in a cylindrical disk-loaded accelerating
structure have been established. By using the same method
as in ref. 1, we will give the analytical formulae of the loss
factors and wakefields in a rectangular slow-wave acceler-
ating structure.

In section 2, the single rectangular cavity’s properties are
briefly summarized, since a rectangular cavity is the very ba-
sic element of a rectangular accelerating structure. In sec-
tion 3, the analytical expressions for all the synchronous
modes’ loss factors and the wakefields are derived.

2 SINGLE RECTANGULAR RESONANT
CAVITY

In the cartesian coordinate system the em field distributions
of the TMmnl modes in a rectangular resonant cavity are:
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m = 1; 2; � � �; n = 1; 2; � � �; l = 0; 1; 2; � � � (7)

where a, b and h are shown in Fig. 1, �0 is the electric per-
mittivity in vacuum, and H0 is a constant. The resonant an-
gular frequencies of the TMmnl modes are determined by:
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The power dissipationPmnl, stored energy Umnl, and qual-
ity factor Q0;mnl are expressed as [2]:
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Rs;mnlH

2
0�

2

4

�
n2b

a

�
1 +

h

a�

�
+

m2a

b

�
1 +

h

b�

��
(9)

Umnl =
H2
0�0abh�

2

16�

�
n2

a2
+

m2

b2

�
(10)

Q0;mnl =
!�0abh(n

2=a2 +m2=b2)

4Rs;mnl�
�
n2 b

a
(1 + h=a�) +m2 a

b
(1 + h=b�)

�
(11)

where
� = f1;l6=0

1=2;l=0
(12)

Rs;mnl =

�!mnl�0

2�

�1=2
(13)

where � is the electric conductivity and �0 is the magnetic
permeability, respectively.



3 LOSS FACTORS OF A RECTANGULAR
SLOW-WAVE ACCELERATING

STRUCTURE

We consider a rectangular accelerating structure as shown in
Fig. 1. Due to the coupling through the aperture between
cavities, passbands will form corresponding to each rectan-
gular resonant mode. We will keep using three subscripts
mnl to specify the passbands. In the following we assume
that the synchronous frequency of the TMmnl passband is
not very different from !mnl, and we will use !mnl to re-
place the corresponding synchronous frequency. The delta
function wakefields of a point charge passing through a rect-
angular structure can be found by using the following for-
mulae
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where Wx;mnl, Wy;mnl andWz;mnl are the wakefields cor-
responding to the mnlth synchronous mode. To find out the
expressions ofWx;mnl, Wy;mnl and Wz;mnl, one has to use
the generalized Panofsky-Wenzel theorem derived in ref. 3.
We know therefore that in a cartesian coordinate system
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where s = �c, c is the velocity of light in vacuum and s is
the distance between the exciting charge and a test charge.
Tmn(x; y) and Zl(s) satisfy the following equations:
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It is found that
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where xq and yq are the transverse coordinates of the excit-
ing charge, x and y are the transverse coordinates of the test
charge, and the the axis of x = xw; y = yw has been cho-
sen to be on the surface of the waveguide which connects
the two adjacent rectangular cavities.

The definition of the loss factor of a synchronous mode
is expressed as

kmnl =
Emnl
s;z (x = xw; y = yw)
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where Emnl
s;z (x = xw; y = yw) is the synchronous de-

celerating electric field along the axis of x = xw; y =

yw , and dUmnl=dz is the energy stored per meter. For the
mnlth passband by using the same method as in refs. 1
and 5, one has Emnl

s;z (x = xw; y = yw) = Ez;mnl(x =

xw; y = yw)�(�mnl) and dUmnl=dz = Umnl=D, where
Ez;mnl(x = xw; y = yw) is the longitudinal electric field
of themnlth mode in the rectangular cavity before the aper-
tures are opened. When l = 0,
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and when l 6= 0, one has two synchronous modes corre-
sponding to the indice l as explained in ref. 1
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By using eq. 3, eq. 10, eq. 24 and eq. 26, we get the gen-
eral expression of the loss factor kmnl corresponding to the
mnlth passband
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By inserting eq. 29 into eqs. 21, 22 and 23, one finds finally
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where the subscript i distinguishes four different cases
shown in Fig. 2, and kmnl;i are expressed as
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The manually added aperture dependent coefficients in Eqs.
37 to 39 simply represent the influence of the coupling aper-
ture on the loss factors. It is obvious that all the loss fac-
tors will be zero when xw = 0 and yw = 0, since this
case corresponds to an infinite uniform rectangular waveg-
uide (assuming this waveguide has no loss). It is important
to note that the dependence of the wakefields on the trans-
verse charge coordinates in a rectangular structure is totally
different from that in a cylindrical structure, and it is this
difference which implies the potential application of a rect-
angular accelerating structure in future linear colliders.

By setting D = h and using eq. 39 one gets the wake-
fields in a closed rectangular resonant cavity. For a Gaus-

Figure 2: Four types of coupling apertures.

sian bunch of charge q and bunch length �t one can calcu-
late the integrated wakefield started from the delta function
wakefields:
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4 CONCLUSION

The analytical formulae of the loss factors and the wake-
fields in a closed rectangular cavity and in a slow-wave rect-
angular accelerating structure have been derived. Due to the
paper length limitation, some examples which show the an-
alytical results have been omitted, and can be found in ref.
5
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