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Emittance growth in intense beams due to nonuniformity,
mismatch, and misalignment has been analyzed by Reiser for the
special case of complete axisymmetry. A more complex problem
occurs in cases where a number of discrete beamlets are to be
merged into a single focusing channel, for example, in designs for
Heavy lon Fusion drivers or Magnetic Fusion negative-ion
systems. Celata, assuming the system to be perfectly matched and
aligned, analyzed the case of four round merging beamlets
arranged in a square array. We generalize these previous studies
and analyze emittance growth in systems that are less symmetric.
We include beam systems that are not necessarily matched and
where the x and y moments may be unequal. We also include the
possibility of initial convergence velocities that may differ in the
two transverse directions and allow for misalignment of the beam
center-of-mass position and direction.

1 INTRODUCTION

Our analysis employs the usual dynamics model [1-7], in
which all particles have the same longitudinal velocity u, massm,
and charge g. We omit relativistic factors, since beam merging
typically occurs at non-relativistic energies.

The external force is assumed radial and uniform, as in
solenoid or plasmafocusing. This force model is also represents
quadrupole focusing if the phase advanceis not too large.

The focusing force is also assumed linear (except for a very
small nonlinearity which damps center- of -mass oscillations on a
very long time scale); thus, Feyt ——qurr The space-charge force
isQE; = gl ., where the space-charge potential @, obeysthe 2-D
Poisson's equation under the paraX|al approximation. The
equation of motion is mr + qur f —ch(r ,2) = 0 with the
transverse position vector r = xX +y ¥. Using |ndependent
variablez, r" +Krf +(g/mu?)@ c=0; K= qu)/mu

Since the self-field E.(X,2) varies with z, the energy of single
particles is not conserved; however, the total energy per unit
length is. In Section 2 we express the total energy in terms of
moments of the distribution function.

It is convenient to define the phase-space center of mass
(c.0.m.) coordinates X = x —XLIX' =x' — X' Owith moments

XA2) = X2EXKCG-XE, VWP=EX2EX2EXE; (1)
likewisefor Y and Vy. Note: to avoid clutter, we drop the ¢ sub-
scripts and represent the mean-square c.0.m. averages by capital
letters. These averages may be calculated as mtegrals over the
dlstrlbutlon function or as sums over particles; e.g., X2 = = x@0=
(1/N)Z Xgi 2 with N the total number of particles per unit Iength

There are severa definitions for emittance, discussed in Ref.
[6]. In 82, in agreement with [3,6,8], we use Sacherer's definit-

ion: ,
07 = @K E O-xoXc 8 = XH(VP-X'2), @)

and similarly for [}. Section 3 treats the asymptotic state, where
free energy has been converted into transverse kinetic energy, and
84 calculates the resulting emittance. Results are rewritten in 85
in terms of tune shifts to compare with Reiser's round-beam
formulas [7]. The generality of our method is illustrated in 86
(elliptic beam with five kinds of free energy) and §7 (a pair of
merging beamlets).

2 TRANSVERSE ENERGY

Potential energy—self-field part: The self-field energy is obtained
by an integration over unit length within aradius b that includes al

of the beam, _1
Es = [dxdy ang; ()
nisthe particle density. The free self-field energy E; is defined by

subtracting from Eg the energy E; associated with asmgle unlform
circular beam havmg the same rms radius R= (X2+Y2)12
current. E; is calculated in c.o.m. coordinates; the off- center
image-charge energies for Eqand E, cancel if an enclosing pipeis
fairly large [9]. Thus, E; = (N202/16me)[ 1+ 2In(b2/2R2)].

The normalized free self-field energy U, isfound by dividing
by the self-field energy w, = N2q2/16me, within the idealized
uniform beam: U, = (Es — E;)/w,. U,, depends only on the
configuration of the beam charge, and |stherefore also called the
shape factor. It has been calculated for various density profilesin
round beams [4-6] and for beams composed of arbitrary arrange-
ments of round beamlets [10]. Uniform elliptical beams were
treated in Ref. [1]—see §6 below.

Inverting the definition of Uy, gives

Eq =w,Up+E; = W (Un+ 1+ 2|n2b—;2)
= (u —2In(x2+Y3)+C. (4
16
Potential energy—external f|e|d part:
(Okr, using Eq. (1),

Eext = mMu 22(X|2+Y|2) =

For linear continuous force

NmUZK (D(ZEH' @2[)
Nm” M (evaed), @
where p? = X+ [y 3.
Potential energy—image field part: We assume image fields are
very small; Ref. [7] shows how to account for a nearby
conducting pipe.

Kinetic energy: T = (m/Z)sz— (NmuU2) X' 2+y' 2= (NmUZ2)x
(VuP+V 2+ X B+ 1y 13), or using Eq @),

21 2
Nmu D%]% .

=X E+Y E?.
Normalized total energy U'®":  Adding the above three energy

terms and normalizing by dividing through by Ng?/8re,, we can
write

T =

+x'2+Y'2+ VZ@ (6)

with v2

utot = y+w+ % + C, M
where 2 >
_ O K 2, v2 2,y2

U= §X2+QL2+|3(X+Y)—IH(X +Y9), 8
W = %( 2+ v +X'2+Y'2) 9

and 2
p= NI°_ (10

4Trsnmu

is one-half the usual normalized perveance.

3 INITIAL, FINAL, and EQUIVALENT BEAMS
Initial state:

u
U % = U, +W, + 22 + C, (11)
where 5
Oy, K
Uy = %+ %+ 572-Inzf? (12)
px? pyZ P
and 0 0
z2 = X2+YZ2. (13)

(We reserve the notation R for round beams and generally use Z.)
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Final asymptotic state: We assume that, because of dlight
nonlinearities in the external field (neglected above), the beam
eventualy relaxes to a centered round matched beam [11]:

X2=Y2=IR2  W=0, (14)

with total emittance 0. 2 5
=40, 2 =40, 2 15
Then Xoo U Y 13
Uy = Ug+ 57+ C' (16)

Envelope equation: Using Sacherer's envelope equations [3] for
the specia case of around beam in equilibrium, we can write
02 K
0 _ 2 _
Rz P b

00

17
and (8) becomes

U, = 25R2Z-1-InR2. (18)
Equivalent Uniform Elliptical Beam: Consider auniform elliptical
beam with the same values of K, P, [y, and Oy, as the actual
initial beam. This equivalent beam is stationary if rms envelopes
XpandY , satisfy [3]

X X2 = sz Xm 19
PT™ 7 PXp2 XptY (19)
m m
Y
%)sz = Dyoz + m (20)
PYr? Xt Y

The exact solution can be obtained indirectly [12]. Fig.1 shows
the dependence of X, and Y ,, on the emittance [, and the ratio
Ok, /Oy, The envelopes are shown as normalized values:
X=X, V(2k/P) and y =Y,V(2k/P). The figure assumes that
Uy, = Oy, ; it follows that X, 2 Y, and Vem = Vym,
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Fig.1. Normalized X, and Y, vs. emittance ratio for two values of [y, .

Adding (19) and (20), we see that the matched equivalent beam
also satisfies

DYO K- 2
= 5722 -1, 21
me2 py,2 _ P @0
where
Z.2 = X 2+Y,2 (22)
Thus we can write
K
Uy = 2sz2-1—|nzm2. (23)

4 FINAL RADIUS AND EMITTANCE
Theinitial and final energies U and U ' are equal; thus Eqgs.
(16) and (11) give Y

u
Uy = Uy + Wy + 0. (24)

We define the difference energy Uy,

Uy = U, - Up, (25)
i.e.,
Dyo Y, 2
Vi T o 2%2 W
Z
+ F,(z(?_zmz) -|nz:12. (26)
The total excess energy is defined as
Uo = Uy + W+ o e 27
e — ¥d 0 2 . ( )

The shape factor U, for the final beam has been calculated using
the waterbag phase-space model [12]. Although U, can reach
significant values for extreme cases, even then it can be shown to
have asmall effect on the overall results. Wewill drop U, in the
present paper.

Exact equation for R,;:  We subtract U,,, from both sides of (24),
getting U,,— U, = Ug, Or

2

K Re
2'3 (Rmz—Zmz) —1In p

m

= Ug, (28)

the exact equation for the final beam radius R, in terms of Z,,, and
the excess energy Ug just defined.

Iterative solution: We expend thelogarithmin (28) and iterate;

— = 1+g; @ 29

z2 g 2x—1 1072 (2x—l 1)2 E( )
where

Xt = gzmz > 1 (30)

Usually g is small. We have defined X so that it agrees with

Reiser's X [7] in the specia case of around beam.

Exact equation for final emittance: The final emittance is obtained
from (17), written as

02 = kRS'-PRZ, (31)

using R, from (28).

Final emittance as power seriesin U Weinsert Roo2 = Zm2(1+g)
from (29) into (31) and get

02 = PZ2[ (x1-1) + 2 -1)g + X L]
with x~* from (30). Theterm (X™'—1) is seen to] be the right side
of (21). Then, we use the expansion through U of g [Eq. (29)]

and combine with the Ue2 term from 92 We flnally obtain our
main result:

Y. 20 X 20
2 _— 2 m 2 m
Ls = kg §+X—ng+ Oyg @+—ZH

+PZ@J1Ue H

Y E (32)
Matched beam: If the beam is matched and aligned, then Z; 2 =
Zn 2 and W, = 0 Ud simplifies and combines with the emlttance
terms in (32)

Y20 X220
2 _ 2 2
Doo - DXO @:‘- 7}H+ Dyo %4-702%

+ O(* +Ug)?

+PZ; 2Yn (33)

W, =0 and 202 =z.2. (34)

For around beam, U in the quadratic term vanishes. In general it
does not vanish, but is usually close to the lowest value that could
be obtained by adjusting Z, .



5 PHASE ADVANCES, EMITTANCE RATIO

The quantity X [Eqg. (30)] that appears in (29) and (32) can be
related to the tune ratios Ty, Ty and T of the equivalent uniform

S Y < V.
T, = o, Tf = O, T° = 1-X. (35
X KX y KY X (39)
Note that
Z.21% = X218 + Y, 212 (36)
Combining gives
4.2 ZZm2 ZZm2 = 2
KZ,' 17 = DXO F + Dyo ﬁ = Dm s (37
m m

where [, is a kind of mean value. Dividing (32) by [1,2 and
using (37) and (35) yields
02z 1-12 1, 21-1? O
Dimz = 1+ _[72 @Je"' éUe 1+T2 +H
Thisis ageneralization of the round-beam Eq. (12) in Ref. [7].

Special cases: Any system with [, = [y,—e.g., round beams or
square arrays of beamlets—gives 12 = T,2 = Ty2 and ;2 =
42 = 40,2 = ]2, reducing (38) to an equation like Reiser's.
However, (38) extends the accuracy by including the second-order
U term. Other differences: our treatment includes not only off-
centeredness [without image effects] from thek p? term in (9), but
also errorsin aiming and envelope angles from the terms v2, X' 2,
andY'?2.

Note also that U simultaneously includes the effects of beam
nonuniformity, mismatch, and misalignment, so that Ug?
introduces significant crosstermsif two or more effects are large.
All three can be large in asymmetric systems, where Un0/2 can
approach unity.

6 EXAMPLE: UNIFORM ELLIPTICAL BEAM

A simple model isthe case of auniform elliptical beam with equal
transverse emittances: Uy, = Oy,. From (19)«20), Xm= Yy, and
Z,? - Ry?, with Ry 2 the solution of KR *—[] 2-PR.? = 0.

Difference energy Uy: We choose the model ZO2 = Rmz; from

(26),
Uy = Dixoz (1—x202/\(02)2
Pz2  XAYSE
which would vanish if the beam were round. The multiplying
factor is 02 02 Koo ﬁ ~ T2
PZZ KX, 2 2PTM T oax o 4(1-T3)
Choosing parameters X, /Y, = 1.5 and T=0.4 gives Uy = 0.0331.

Shape factor U, for uniform elliptical beam: Uy, is well-known to
result from beam nonuniformity, but even uniform beams have U,
> 0if they deviate from roundness. The elliptical case was studied
by Lapostolle[1]; in our notation theresult is
Uim = |n 2(X02+Y02) — 2(1+X02/ Yozz)
2 (Xo*+Yo )? (1+X,/Y)

which vanishes for X, - Y, . The above parameters (X, /Y, = 1.5)
giveU,,, /2 =In(1.04) = 0.0392, comparableto Uy .

Beam alignment error: The off-center term in W, (with 202: Rmz)
yields

(398)

(39)

,p2 - KRZ p02 - 1 4p02
PY 7 P X24Y2 T 1-T? 24P
where a,b areinitial beam envelopes. With T = 0.4 and misalign-
ment p, /(a2+17)Y?=0.1, (k/P)p,2 = 0.04/0.84 = 0.0476.
Aiming and angle errors:  The second termin W, is
V2 Ve L av¢
X(0:+6r)

P 7 WR2ZX

(0'sarefree-particleangles). If v,/(6,2+6,2)Y2 = 0.1, we again
get the value 0.04/0.84 = 0.0476. The |ast termsin W, are treated

similarly, and again typical values are 0.0476 and 0.0476.
Total excess energy and emittanceratio: Ug= Uy +U, /2 + W,

= 0.2151 after adding al five terms. From (38), the emittance
ratiois [ /0] = v2.217 = 1.489.

7 EXAMPLE: MERGING BEAMLETS

The problem of beam merging occurs, for example, in Heavy lon
Fusion drivers and Magnetic Fusion negative-ion systems. The
case of identical non-overlapping round beamlets has been ana-
lyzed [9,10]. If al the round beamlets have the same emittance in
both planes, then Vx, = Vy, = V,. If we also assume the beam is
matched [Eq. (34)], then (33) applies and the two emittance terms
on the right side become simply 2(X *+YA)V,? or 2(0x2+0),2).
Asaratio:
07 PU

W =1+ ﬁ + 2nd order terms.
Analytic expressionsfor X, Y, andU,,; for various arrangements
of beamletsare givenin [10]. Equation (40) can also bewrittenin
terms of tune depression ratios and the ratio X,/ Y,,, obtainable
from (19) and (20).

Two beamlet case: a composite beam with two separated round
beamlets provides a simple example that exhibits severe
asymmetry and large emittance growth. It iseasily handled using
the above results. Details are given in Ref. [12].

ACKNOWLEDGMENT

| thank E.P. Lee for helpful comments. Thiswork was supported
in part by U.S. DOE Contract DE-AC03-76SF00098.

REFERENCES

[1] P.M. Lapostolle, "Energy Relationships in Continuous Beams,"
CERN report CERN-ISR-DI/71-6 (1971).

[2] P.M. Lapostolle, "Possible Emittance Increase Through
Filamentation Due to Space Charge in Continuous Beams," |EEE
Trans. Nucl. Sci. 18, 1101 (1971).

[3] F.J. Sacherer, "RMS Envelope Equations with Space Charge,"
IEEE Trans. Nucl. Sci. 18, 1055 (1971).

[4 E.P.Lee SS. Yu, and W.A. Barletta, "Phase Space Distortion of
a Heavy-lon Beam Propagating Through a Vacuum Reactor
Vessal," Nucl. Fusion 21 961, (1981). Note: Lee's shape factor
isthe squareroot of ours.

[5] T.P. Wangler, K.R. Crandall, R.S. Mills, and M. Reiser,
"Relation between Field Energy and RMS Emittance in Intense
Particle Beams," |EEE Trans. Nucl. Sci. 32, 2196 (1985).

[6] O.A. Anderson, "Internal Dynamics and Emittance Growth in
Space-Charge-Dominated Beams," Particle Accelerators 21, 197
(2987) .

[71 M. Reiser, "Free Energy and Emittance Growth in Nonstationary
Charged Particle Beams," J. Appl. Phys. 70, 1919 (1991).

[8] C.M. Celata, A. Faltens, David L. Judd, L. Smith, and M.G.
Tiefenback, "Transverse Combining of Nonrelativistic Beamsina
Multiple Beam Induction Linac," Proc. 1987 Particle Acceler-ator
Conference, p. 1167; aso, personal communication, 1993.

[99 E.P. Lee, "Nonlinear Field Energy of a Set of N Beams,"

Lawrence Berkeley Laboratory report LBL-38317 (1996). Also,

E.P. Lee, persona communication (1993).

O.A. Anderson, "Emittance Growth from Merging Arrays of

Round Beamlets," HIF Symposium, Princeton, 1995, to be

published in Fusion Engineering and Design.

O.A. Anderson, "Emittance Growth Ratesfor Displaced Beams,"

International Symp. on Heavy lon Inertial Fusion, Frascati, Italy,

May 25-28, 1993, Nuovo Cimento A., 106A, 1605 (1993).

O.A. Anderson, "Relationship of Emittance Growth to Free

Energy in Non-Symmetric Beam Configurations," Lawrence

Berkeley National Laboratory report LBNL-38846 (1996).

(40)

(10

(11

(12



