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EMITTANCE GROWTH IN NON-SYMMETRIC BEAM CONFIGURATIONS
O. A. Anderson, LBL, Berkeley 94720, California, USA†

Emittance growth in intense beams due to nonuniformity,
mismatch, and misalignment has been analyzed by Reiser for the
special case of complete axisymmetry.  A more complex problem
occurs in cases where a number of discrete beamlets are to be
merged into a single focusing channel, for example, in designs for
Heavy Ion Fusion drivers or Magnetic Fusion negative-ion
systems.  Celata, assuming the system to be perfectly matched and
aligned, analyzed the case of four round merging beamlets
arranged in a square array.  We generalize these previous studies
and analyze emittance growth in systems that are less symmetric.
We include beam systems that are not necessarily matched and
where the x and y moments may be unequal.  We also include the
possibility of initial convergence velocities that may differ in the
two transverse directions and allow for misalignment of the beam
center-of-mass position and direction.

1  INTRODUCTION
Our analysis employs the usual dynamics model [1–7], in

which all particles have the same longitudinal velocity u, mass m,
and charge q.  We omit relativistic factors, since beam merging
typically occurs at non-relativistic energies.

The external force is assumed radial and uniform, as in
solenoid or plasma focusing.  This force model is also represents
quadrupole focusing if the phase advance is not too large.

The focusing force is also assumed linear (except for a very
small nonlinearity which damps center-of-mass oscillations on a
very long time scale); thus, Fext = –qKer r̂. The space-charge force
is qEc = –q∇φ c, where the space-charge potential φc obeys the 2-D
Poisson's equation under the paraxial approximation. The
equation of motion is mr̈ +  q K er r̂  –  qE c(r ,z) = 0 with the
transverse position vector r ≡ x x̂  +  y ŷ .  Using independent
variable z,  r′′ + κ r r̂ + (q/mu2)∇φ c = 0;  κ ≡ (qKe)/mu2.

Since the self-field Ec(x,z) varies with z, the energy of single
particles is not conserved; however, the total energy per unit
length is.  In Section 2 we express the total energy in terms of
moments of the distribution function.

It is convenient to define the phase-space center of mass
(c.o.m.) coordinates xc ≡ x – 〈x〉, x′c  ≡ x′ – 〈x′ 〉  with moments

X2(z) ≡ 〈 xc
2 〉 = 〈 x2 〉  – 〈 x 〉2,   Vx

2 ≡ 〈 x′c
2 〉 = 〈 x′ 2 〉  – 〈 x′ 〉 2 ;   (1)

likewise for Y and Vy.  Note:  to avoid clutter, we drop the c sub-
scripts and represent the mean-square c.o.m. averages by capital
letters.  These averages may be calculated as integrals over the
distribution function or as sums over particles:  e.g., X2 = 〈xc

2 〉 =
(1/N)∑

i
 xci

2 with N the total number of particles per unit length.
There are several definitions for emittance, discussed in Ref.

[6].  In §2, in agreement with [3,6,8], we use Sacherer's definit-
ion:

   ∈ x
2  ≡  〈 xc

2 〉  〈 x′c
2 〉  – 〈 xcx′c〉2 = X2(Vx

2 – X′ 2),         (2)

and similarly for ∈ y.  Section 3 treats the asymptotic state, where
free energy has been converted into transverse kinetic energy, and
§4 calculates the resulting emittance.  Results are rewritten in §5
in terms of tune shifts to compare with Reiser's round-beam
formulas [7].  The generality of our method is illustrated in §6
(elliptic beam with five kinds of free energy) and §7 (a pair of
merging beamlets).

2  TRANSVERSE ENERGY
Potential energy—self-field part: The self-field energy is obtained
by an integration over unit length within a radius b that includes all
of the beam,

Es  ≡  1
2
 ∫ dxdy qnφc ;                                 (3)

n is the particle density.  The free self-field energy Ef is defined by

subtracting from Es the energy E1 associated with a single uniform
circular beam having the same rms radius R ≡ (X2+Y2)1/2 and
current.  Ef is calculated in c.o.m. coordinates; the off-center
image-charge energies for Es and E1 cancel if an enclosing pipe is
fairly large [9].  Thus, E1 = (N2q2/16πε

0
)[1+ 2ln(b2/2R2)].

The normalized free self-field energy Un is found by dividing
by the self-field energy w0 = N2q2/16πε

0
 within the idealized

uniform beam:  Un = (Es – E1)/w0 . Un depends only on the
configuration of the beam charge, and is therefore also called the
shape factor.  It has been calculated for various density profiles in
round beams [4–6] and for beams composed of arbitrary arrange-
ments of round beamlets [10].  Uniform elliptical beams were
treated in Ref. [1]—see §6 below.

Inverting the definition of Un gives

          Es  = w0 Un + E1 =   
N2q2

16πε
0

 (Un+ 1+ 2ln 
b2

2R2)

=   
N2q2

16πε
0

 (Un–2 ln(X2+Y2))+ C.        (4)

Potential energy—external field part:   For linear continuous force
∝ κ r, using Eq. (1),

          Eext = mu2κ
2∑

i

 
(xi

2+yi
2) =  

Nmu2κ
2  ( 〈 x2 〉 + 〈 y2 〉)

 =  
Nmu2κ

2  (X2+Y2+ρ2),        (5)
where ρ2 ≡ 〈 x 〉2+ 〈 y 〉 2.

Potential energy—image field part:  We assume image fields are
very small; Ref. [7] shows how to account for a nearby
conducting pipe.

Kinetic energy: T = (m/2)∑
i

 vi
2 = (Nmu2/2)〈x′ 2+y′ 2〉 = (Nmu2/2)×

(Vx
2+Vy

2+ 〈 x′ 〉 2+ 〈 y′ 〉 2), or using Eq. (2),

T    =     
Nmu2

2
 
 
 ∈ x

2

 X2 + 
∈ y

2

 Y2  + X′ 2+Y′ 2 +  ν2
 


 
,         (6)

with ν2 ≡ 〈 x′ 〉 2+ 〈 y′ 〉 2 .

Normalized total energy Utot:   Adding the above three energy
terms and normalizing by dividing through by N2q2/8πε

0
, we can

write
Utot   =   U + W +  

Un
2   +  C',                        (7)

where

U  ≡   
∈ x

2

PX2  +  
∈ y

2

PY2  +  
κ
P

 (X2+Y2) – ln(X2+Y2),          (8)

W   ≡   
1
P

 (κρ2+ ν2 + X′  2+ Y′  2),                    (9)
and

P  ≡  
Nq2

4πε
0
mu2                                    (10)

is one-half the usual normalized perveance.

3  INITIAL, FINAL, and EQUIVALENT BEAMS

Initial state:

U
0
tot   =   U

0
 + W

0
 +  

Un0

2   +  C',                   (11)
where

U
0
  =   

∈ x0

2

PX
0

2  +  
∈ y0

2

PY
0

2  +   
κ
P

  Z0
2 – ln  Z0

2              (12)

and
Z0

2   ≡  X0
2 + Y0

2
 .                              (13)

(We reserve the notation R for round beams and generally use Z.)



Final asymptotic state:  We assume that, because of slight
nonlinearities in the external field (neglected above), the beam
eventually relaxes to a centered round matched beam [11]:

X∞
2  = Y∞

2  =  1
2
 R∞

2,         W = 0,                  (14)

with total emittance
∈ ∞

2  =  4∈ x∞
2   =  4∈ y∞

2 .                         (15)
Then

U∞
tot   =   U∞ +  

Un∞
2   +  C'.                      (16)

Envelope equation:   Using Sacherer's envelope equations [3] for
the special case of a round beam in equilibrium, we can write

∈ ∞
2

PR∞
2   =    

κ
P

  R∞
2  –  1 ,                         (17)

and (8) becomes

U∞   =   2 
κ
P

  R∞
2  –  1 –  ln R∞

2 .                 (18)

Equivalent Uniform Elliptical Beam:  Consider a uniform elliptical
beam with the same values of κ , P, ∈ x0 and ∈ y0  as the actual
initial beam. This equivalent beam is stationary if rms envelopes
Xm and Ym satisfy [3]

 
κ
P

 Xm
2   =    

∈ x0
2

PXm
2  +   

 X m  

Xm+
 

Ym
                    (19)

 
κ
P

 Ym
2   =    

∈ y0
2

PYm
2  +   

 Ym  

Xm+
 

Ym
  .                 (20)

The exact solution can be obtained indirectly [12].  Fig.1 shows
the dependence of Xm and Ym on the emittance ∈ y0

 and the ratio
∈ x0

/∈ y0
. The envelopes are shown as normalized values:

x ≡Xm√(2κ /P) and y ≡ Ym√(2κ /P). The figure assumes that
∈ x0

 ≥  ∈ y0
; it follows that Xm ≥ Ym and Vxm ≥ Vym.

1.4

1.3

1.2

1.1

1.0

x,
 y

∈ x0 /∈ y0

1.0 1.5 2.0 2.5 3.0

x

y

x

y

∈ y0 = 0.5 ( P /2κ1/2)

∈ y0 = 0.1  ( P /2κ1/2)

Fig. 1.  Normalized Xm and Ym vs. emittance ratio for two values of ∈ y0
.

Adding (19) and (20), we see that the matched equivalent beam
also satisfies

 
∈ x0

2

PXm
2  +  

∈ y0
2

PYm
2    =    

κ
P

 Zm
2  –  1,                 (21)

where
Zm

2   ≡   Xm
2 + Ym

2.                           (22)
Thus we can write

Um   =   2 
κ
P

  Zm
2  –  1 –  ln Zm

2 .                (23)

4  FINAL RADIUS AND EMITTANCE

The initial and final energies U
0
tot and U∞

tot are equal; thus Eqs.
(16) and (11) give

U∞  =  U
0
 + W

0
 +  

Un0
–Un∞
2

 .                   (24)

We define the difference energy Ud,

Ud   ≡   U
0
 –  Um ,                              (25)

i.e.,

          Ud    =   
∈ x0

2

PXm
2 

 
Xm

2

X0
2  – 1

 

 + ∈ y0

2

PYm
2 

 
Ym

2

Y0
2  – 1

 


+ κ
P

 (Z0
2

 – Zm
2) – ln 

Z0
2

Zm
2 .            (26)

The total excess energy is defined as

Ue   ≡  Ud  +  W
0
 +  

Un0
–Un∞
2

 .                  (27)

The shape factor Un∞ for the final beam has been calculated using
the waterbag phase-space model [12].  Although Un∞ can reach
significant values for extreme cases,  even then it can be shown to
have a small effect on the overall results.  We will drop Un∞ in the
present paper.

Exact equation for R∞:   We subtract Um from both sides of (24),
getting  U∞ – Um = Ue , or

 2 
κ
P

 (R∞
2 – Zm

2) – ln 
R∞

2

Zm
2    =   Ue ,                 (28)

the exact equation for the final beam radius R∞ in terms of Zm and
the excess energy Ue  just defined.

Iterative solution:  We expand the logarithm in (28) and iterate;

 
R∞

2

Zm
2  =  1 + g;    g  =  

Ue

2χ–1 –1
 
 

1 –  

1
2

  
Ue

(2χ–1 –1)2  + …
 

   (29)

where
χ–1   ≡    

κ
P

  Zm
2   ≥   1.                          (30)

Usually g is small.  We have defined χ  so that it agrees with
Reiser's χ [7] in the special case of a round beam.

Exact equation for final emittance:  The final emittance is obtained
from (17), written as

∈ ∞
2   =  κ R∞

4 – PR∞
2,                         (31)

using R∞ from (28).

Final emittance as power series in Ue:  We insert  R∞
2 = Zm

2(1+g)
from (29) into (31) and get

∈ ∞
2   =  PZm

2 [ (χ–1 –1) + (2χ–1 –1)g + χ–1 g2 ]

with χ–1 from (30).  The term (χ–1 –1) is seen to be the right side
of (21).  Then, we use the expansion through Ue

2 of g [Eq. (29)]
and combine with the Ue

2 term from g2.  We finally obtain our
main result  :

        ∈ ∞
2   =  ∈ x0

2

 

1+ 

Ym
2

Xm
2 

 + ∈ y0

2

 

1+ 

Xm
2

Ym
2 


+ PZm
2

 

Ue + 

1
2 

Ue
2

2χ–1– 1
 +…

 

 .       (32)

Matched beam:  If the beam is matched and aligned, then Z0
2 =

Zm
2 and W

0
 = 0; Ud simplifies and combines with the emittance

terms in (32).  I.e.,

         ∈ ∞
2   =  ∈ x0

2

 

1+ 

Y0
2

X0
2 

 + ∈ y0

2

 

1+ 

X0
2

Y0
2 


+ PZ0
2 Un0

2   + O(Un0

2  + Ud)2        (33)
if

W
0
 = 0    and     Z0

2 = Zm
2 .                      (34)

For a round beam, Ud in the quadratic term vanishes. In general it
does not vanish, but is usually close to the lowest value that could
be obtained by adjusting Z0 .



5  PHASE ADVANCES, EMITTANCE RATIO

The quantity χ [Eq. (30)] that appears in (29) and (32) can be
related to the tune ratios τx, τy and τ  of the equivalent uniform
beam:

τx
2   ≡   

∈ x0
2

κXm
4  ,      τy

2   ≡   
∈ y0

2

κYm
4  ,     τ2    ≡   1 – χ .     (35)

Note that
Zm

2 τ2   =   Xm
2 τx

2  +  Ym
2 τy

2 .                   (36)
Combining gives

κZm
4 τ2  =  ∈ x0

2  
Zm

2

Xm
2  + ∈ y0

2  
Zm

2

Ym
2     ≡   ∈ m

2 ,         (37)

where ∈ m is a kind of mean value. Dividing (32) by ∈ m
2  and

using (37) and (35) yields
∈ ∞

2

∈ m
2    =   1 +  

1–τ2

τ2   
 

Ue  +  

1
2
 Ue

2 
1–τ2

1+τ2   + …
 

 .       (38)

This is a generalization of the round-beam Eq. (12) in Ref. [7].

Special cases:  Any system with ∈ x0  = ∈ y0 —e.g., round beams or
square arrays of beamlets—gives τ2  = τ x2  = τ y2  and ∈ m

2  =
4∈ x0

2  = 4∈ y0
2  = ∈

0
2 , reducing (38) to an equation like Reiser's.

However, (38) extends the accuracy by including the second-order
Ue

2 term.  Other differences:  our treatment includes not only off-
centeredness [without image effects] from the κρ2 term in (9), but
also errors in aiming and envelope angles from the terms ν2, X′  

2,
and Y′  2.

Note also that Ue simultaneously includes the effects of beam
nonuniformity, mismatch, and misalignment, so that Ue

2

introduces significant cross terms if two or more effects are large.
All three can be large in asymmetric systems, where Un0

/2 can
approach unity.

6  EXAMPLE:  UNIFORM ELLIPTICAL BEAM

A simple model is the case of a uniform elliptical beam with equal
transverse emittances: ∈ x0  = ∈ y0 . From (19)–(20), Xm = Ym and
Zm

2
 → Rm

2, with Rm
2 the solution of  κRm

4
 – ∈ m

2
 – PRm

2 = 0.

Difference energy Ud:  We choose the model Z0
2 = Rm

2; from
(26),

   Ud   =   
∈ x0

2

PZ
0

2  
(1–X0

2/Y0
2)2

X0
2/Y0

2  ,

which would vanish if the beam were round.  The multiplying
factor is

       
∈ x0

2

PZ0
2   =   

∈ x0
2

κXm
4  

κ
2P

 Xm
2  =   

τ2

4χ
   =   

τ2

4(1–τ2)
  .

Choosing parameters X0 /Y0 = 1.5 and τ =0.4 gives Ud = 0.0331.

Shape factor Un for uniform elliptical beam:  Un is well-known to
result from beam nonuniformity, but even uniform beams have Un
> 0 if they deviate from roundness.  The elliptical case was studied
by Lapostolle [1]; in our notation the result is

      
Un0

2    =   ln  
2(X0

2+Y0
2)

( X0 +Y0  )2    =   ln  

2(1+X0
2/Y0

2)
(1+X0 /Y0 )2  ,         (39)

which vanishes for X0
→ Y0 . The above parameters (X0 /Y0  = 1.5)

give Un0
/2 = ln(1.04) = 0.0392, comparable to Ud .

Beam alignment error: The off-center term in W0  (with Z0
2= Rm

2)
yields

   
κ
P

  ρ0
2   =   

κ
P

 Rm
2 ρ0

2

X0
2+Y0

2    =   
1

1–τ2  
4ρ0

2

a2+b2 ,

where a, b are initial beam envelopes. With τ  = 0.4 and misalign-
ment  ρ0 /(a2+b2)1/2 = 0.1,  (κ /P)ρ0

2 = 0.04/0.84 =  0.0476.

Aiming and angle errors:   The second term in W0  is

ν0
2

P    =   
ν0

2

κRm
2χ

   =   
4ν0

2

χ(θa
2+θb

2)

(θ's are free-particle angles).  If  ν0 /(θa
2+θb

2)1/2 = 0.1, we again
get the value 0.04/0.84 = 0.0476. The last terms in W

0
 are treated

similarly, and again typical values are 0.0476 and 0.0476.

Total excess energy and emittance ratio:  Ue ≡ U d + Un0
/2 + W

0

= 0.2151 after adding all five terms.  From (38), the emittance
ratio is ∈ ∞/∈

0
  = √2.217 = 1.489.

7  EXAMPLE:  MERGING BEAMLETS

The problem of beam merging occurs, for example, in Heavy Ion
Fusion drivers and Magnetic Fusion negative-ion systems.  The
case of identical non-overlapping round beamlets has been ana-
lyzed [9,10].  If all the round beamlets have the same emittance in
both planes, then Vx0 = Vy0 ≡ V0.  If we also assume the beam is
matched [Eq. (34)], then (33) applies and the two emittance terms
on the right side become simply 2(X0

2+Y0
2)V0

2 or 2(∈ x0
2+∈ y0

2).
As a ratio: ∈ ∞

2

2(∈ x0
2 +∈ y0

2)   =  1 +
P
4

  
Un0

V
0
2   +  2nd order terms.      (40)

Analytic expressions for X
0
, Y

0
, and Un0

 for various arrangements
of beamlets are given in [10].  Equation (40) can also be written in
terms of tune depression ratios and the ratio Xm/Ym, obtainable
from (19) and (20).

Two beamlet case:  a composite beam with two separated round
beamlets provides a simple example that exhibits severe
asymmetry and large emittance growth.  It is easily handled using
the above results.  Details are given in Ref. [12].
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