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1    INTRODUCTION
Beam expanders are optical assemblies which provide a

transverse expansion of a presumably high intensity particle
beam, in order to obtain a large size footprint at an irradiation
target. Two main concerns in these installations are the
obtainment of a uniform irradiation over the all surface of the
extended target, and the minimization of the irradiation by
particle loss along the beam line.

Following pioneering work [1-3], it is now common to
consider employing non-linear lenses to achieve the transverse
uniformization. In previous reports [4,5] we gave an original
analytical treatment of the uniformization of transverse beam
densities by non-linear lenses in terms of the transport of
random variables and their probability density functions.

We now apply the method to the mastering of the halo
transport and particle losses along the beam line, in an
analytical way [6]. This in particular allows specifying the
aperture of the chamber and optical elements upon the
criterion of a tolerable loss.

The paper is divided as follows. In section 2 we recall the
main aspects of the analytical material used. In section 3 we
give the behaviour of the beam halo and show that the
dodecapole and higher odd-order multipoles strongly modify
the extent of the transverse distribution tails, and can thus be
used to master the beam halo/chamber acceptance. In section
4, we provide the calculation of the non-linear beam envelopes
downstream the uniformization lens. In section 5, we show an
application in the realistic optical structure of a two-
dimensional beam expander.

2    NON-LINEAR TRANSPORT

Figure 1.

We refer here to the analytical material developed in refs.
[4,5]. The developments that follow are based on two main
hypothesis. 1) The transverse motions are supposed to be fully
uncoupled. 2) The particle distributions in both transverse
phase-spaces are supposed to be flat at the non-linear lens
upstream end.

2.1 The non-linear transport

Considering the first hypothesis above, the problem is  a 2-
dimensional one. In the sequel, the transverse phase space will
be denoted (y,t), with t = dy/ds and s is the longitudinal
coordinate. Referring to fig. 1 that schemes the optical design
of a beam expander (Q1-Q7 are quadrupoles, OV and OH are
respectively the vertical and horizonttal non-linear lenses,
BEND is a final shielding bend magnet [6]), the first order

transport downstream the non linear lens (either OV or OH, for
respectively the vertical or horizonttal motion) writes
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where(y2,t2) [respectively (y(s),t(s))] are the phase space
coordinates at the right end of the lens (respectively at s
downstream the lens) and the Rij are the transfer coefficients.

The lens adds the non-linearities of concern in beam
uniformization : the octupole component which determines the
size of the footprint at target and the bulk of the
uniformization, and the higher odd-order non-linearities which
mostly amount to improved uniformization [1-3], and
transverse tail extent [7]. A thin lens model is considered, with
integrated strengths  K2p+1L (p=1 : octupole, p=2 : dodecapole,
etc...), leading to the following kick at the lens
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Now, let the beam ellipse frontier be

γ α β ε π1 1
2 2 1 1 1 1 1

2y y t t+ + = / (3)

where β1, α1 and γ1 = ( ) /1 1
2

1+ α β  are the optical functions at

the lens, ε is the surface of the ellipse. Following the second
hypothesis above, the beam ellipse is flat, so that in terms of
statistical variables, its population is amenable to the linear
regression y r t1 1 1=  with  r1 = -β1/α1. Thus, from eqs. (1,2) the

position random variable at s is given by the polynomial
(schemed in fig. 2)
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with λ1 = r 1R11+R12
, and λ2p+1 = -R12 K2p+1 L r1

2p+1.

Figure 2.

2.2 Transverse beam density

Now, it can be demonstrated [4] that, given the probability
density function f(t1) of the initial angle t1 (e.g., bell-shaped as
schemed in fig. 2), the probability density function of the
random variable y(s), which represents the transverse beam
density, writes
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where the t1,i (i=1,N) are the N real roots of eq. (4).

2.3 Non-linear optical tuning

The multipole strengths for adequate tuning of the beam
footprint at target are obtained from the expressions above, as
follows. The footprint size with the octupole alone is (fig. 2)
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(considering that λ1λ3 < 0), or in the case of a combined
octupole + dodecapole non-linearity (with λ1λ5 > 0)
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with presumably yM,3 ≈ yM,5 since the dodecapole is supposed to
simply provide a fine tuning of g(y), and negligible effect of
eventual higher order multipole components.

From these and given the footprint size yM at the target, the
tuning of the multipole components comes out, namely, by
introducing α, β = optical functions at the target, ϕ = betatron
phase advance from the lens to the target [5],

- first order tuning : it determines the β value at target or
equivalently λ1, and is provided by σy≈3yM/4,

- octupole :
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- dodecapole : an adequate starting value of λ5 for further
fine smoothing of the transverse density is λ5 = λ3

2/4λ1, thus
giving
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3    HALO CONFINEMENT
It can be observed (fig. 2) [7] that exists a critical value t1,c

of the starting angle defined in the case of the octupole alone

by t c t c1 1 3, ,≡  such that − = +λ λ λ1 1 3 1 1 3 3 1 3
3t c t c t c, , ,

 that is,

considering that λ1λ3 < 0

t c1 3
2 1 3, /= − λ λ (10)

or, in the case octupole + dodecapole, by t c t c1 1 5, ,≡  such

thatλ λ λ λ1 1 5 1 1 5 3 1 5
3

5 1 5
5t c t c t c t c, , , ,= + +  that is, with λ3λ5 < 0

t c1 5 3 5, /= −λ λ (11)

This critical angle t1,c defines two regions in the incident
density f(t1) : under the effect of the octupole alone, any
particle with incidence t1 < t c1 3,  (a contrario, t1 > t c1 3, ) is

confined within the region y yc< = −
3 1 2 1 3λ λ λ( / )  in the

neighbouring of the optical axis (a contrario, deconfined) ;
under the effect of the combination octupole + dodecapole,
any particle with incidence t t c1 1 5

< ,  (a contrario, t t c1 1 5
> , )

is confined within the region y yc< = −
5 1 3 5λ λ λ( / )  (a

contrario, deconfined). This shows in particular that an
adequate dodecapole component is likely to increase the
vacuum chamber acceptance, or equivalently to permit the
reduction of the transverse design aperture of the optical
elements along the beam line.

The fig. 3 represents this effect at the quadrupole Q4 (fig.
1) in the mixed phase space (y,t1) for a population sorted in the

range 6 7
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 of an incident gaussian distribution f(t1)

(relative population < 10-8). The deconfinement by the
octupole (curves 3) can be observed : the particles show
transverse excursions larger than in the linear case (curves 1),
while the combined octupole + dodecapole lens induces a
confinement (curves 5) : the particles show transverse
excursions smaller than in the linear case.

Figure 3.

4    NON-LINEAR ENVELOPES
Beam envelopes are normally obtained by the transport of

the optical functions α(s), β(s) and γ(s). Assuming zero
dispersion, the r.m.s. beam size (so-called « σ-envelope ») is

given along the line by σ β ε π( ) ( ) / /s s= . The transverse

apertures (chamber, pole tip radii, etc...) are thus defined as
the nσ-envelope, with usually n = a few units depending on the
loss tolerance. The parameter of concern is actually the loss
ratio, assumed to be the population beyond the nσ width of a
gaussian distribution, that is,

τ σ= −1 erf n( ) (12)

In the case of beam expanders, the non-linearities
introduced by the uniformization lens are so strong that it is no
longer relevant to address τ in terms of the nσ envelope,
because the transverse density g[y(s)] (eq. 5) is much to far
from gaussian, as observed in fig. 2. In fact, given the
tolerable loss ratio τ (of the order of 10-7 - 10-9 in high energy,
high intensity LINAC installations), the non-linear envelope
Y(s) is given by
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Figure 4.

The fig. 4 gives a geometrical interpretation of this integral :
g y dy( )∫  builds up from contributions of the N roots of eq. (4):

the shaded area under g(y) is the sum of the three separate
shaded areas under f(t1). For instance, if f(t1) is gaussian and
centered, the integral to solve for Y(s) writes

erf[t1,1(Y(s)] - erf[t1,2(Y(s)] + erf[t1,3(Y(s)] = 1-τ (14)

5    EXAMPLE
The τ=10-7 non-linear envelopes in a structure as schemed

in fig. 1 that provides a 0.45 × 0.45 m2 uniform footprint at
target, have been computed by the method above [8], with the
octupole alone (curves 3), and octupole + dodecapole (curves
5) [7]. They are displayed in fig. 5 together with the linear
envelopes (curves 1) for comparison.

Figure 5.

On the other hand this analytical material has been
validated by comparison with numerical stepwise ray-tracing
of a population of  1000 particles through that expander [9]. In
order to obtain the beam envelopes from stepwise ray-tracing,
the 1000 particles are launched with their initial invariant

lying lying in the range [ ]ε π ε π ε π/ . / , . /∈ 5433 54342 2
o o

(εo/π=610-7 m.rad) which materialises the τ=10-7 loss limit.
Namely, the initial phase space coordinates at the left end of
the structure of fig. 1 are correlated by

γ α β ε πoyo oyoto oto
2 2 2+ + = / (15)

It is clear from this that the non-linear beam envelope is given
by the maximum excursion Y(s) of the 1000-particle set along
the beam line. The particle trajectories in the vertical plane are
shown in fig. 6, with the solid lines of the analytical envelopes
of fig. 5 superimposed, for comparison.

Note the strong differences in the transverse beam size,
and the confinement generally induced by the octupole +
dodecapole configuration, w.r.t. both the linear and octupole
alone cases.

In terms of the transverse apertures of the optical elements
along the beam line, it means that one can afford much smaller
pole tip radii when using a combined octupole + dodecapole
lens. In this respect, things may still be improved by an
additive 7-th order multipole component, that would introduce
a further distortion and a next transverse τ limit at y7 , leading
to y7 < y5 (see fig. 2). This might be of interest if even lower
loss ratios were to be achieved.

Figure 6.
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