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Abstract

Our beam-beam simulation code[1] has been improved
and used to study lifetime phenomena under beam-beam
interaction.  One phenomenon observed is high order
horizontal resonances (e. g., 8th to 16th), which are found
to be exceptionally strong in the horizontal tail and have
significant impact on lifetime. A first order perturbation
calculation gives good agreement with the simulation on
resonance width and tune.  Gas scattering is a new feature
has been added to the program.  The lifetime result is
compared with analytical calculation and agrees well.  The
other effect studied is parasitic crossings in PEP-II.  The
simulation demonstrates a dramatic tail blow-up when the
horizontal separation is reduced to about 7 σ.

1  HIGH ORDER HORIZONTAL
RESONANCES IN BEAM-BEAM

INTERACTION

1.1  Analysis

A perturbation method has been developed to study
beam-beam physics[2].  In this section, we concentrate on
horizontal resonances. Assuming a linear storage ring and
a beam-beam interaction as a perturbation, one can find
the island tune Qr and resonance full width ∆Ax[3].  

The island tunes for different resonance orders are
given in Figure 1 for Ay = 1 and R = 0.04, where R is
the ratio of vertical beam size and horizontal beam sizes.
One can see that the island tune is large for these
parameters even for high order resonances.  For example,
for Ax =6, Qr ranges from 0.05ξx to 0.20ξx.  For ξx =

0.0455, Qr = 9.1×10-3 to 2.3×10-3.  Usually in a storage
ring, the inverse of the damping time is in the order of

2×10-4, which means that a particle trapped by the
resonance circulates many times during a damping time.
The effective aperture has been moved to the minimum
amplitude of the resonance island.  The full widths of
resonances are plotted in Figure 2.  Since the aperture
being reduced by the resonance is the full width of the
resonance, a wide resonance is certainly more dangerous.
The impact of the lifetime could be significant.

1.2  Simulation

Simulations have been performed to check the results
of the analytical calculations.  The simulation is a simple
weak-strong model that consists of a linear transfer matrix
and a beam-beam kick.  To obtain the island tunes, a
single particle is launched near the resonance center and

tracked for 1024×p turns.  Then, the island tunes can be
found by an FFT of the coordinates.
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Figure 1: Island tunes normalized by horizontal tune shift
for p = 4, ..., 18.
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Figure 2: Full width of resonance islands for p = 4, ..., 18

The resonances p=8, ..., 16 are checked by simulation.
For each resonance, the horizontal tune is set such that
the resonance is located at about 7 σx.  The vertical tune
Qy is chosen as 0.64, and the results are not sensitive to
the choice.  The horizontal beam-beam tune shift is
0.0455.  The analytical calculation and simulation results
for Qr are listed in Table 1 for comparison.  The
agreement is good at high order resonances but diverged at
low order.  The discrepancy may be caused by the strength
of the resonance which is so strong that the perturbation
method is not a good approximation.  However, the
conclusion that the island tune is much higher than
radiation damping rate is still true.

The island width can be found by showing the beam
tail distributions generated by the simulation program that
was written to study beam-beam lifetime[1].  This will
not only give the island widths, but also the physical
impact to the beam.  Figure 3 gives the distribution
contour plots in amplitude space.  The conditions are the
same as mentioned previously.  The contour lines are the



equal logarithm density locations.  One can easily see the
bulge in the horizontal tail, which resulted from the
resonance.  In Table 2, the analytical results of island full
widths at 7 σx are listed for the different resonances.  This
is closely  comparable to the width of the bulges in
Figure 3.

The comparison between the analytical calculation and
simulation proves that the perturbation method of the
beam-beam interaction is very effective, especially the
agreement is good for very high order terms, which is not
usual in most perturbation methods.  The impact of the
resonances on lifetime gives stopbands in tune plane.
This is discussed in detail in Ref. [3].

Table 1:  Comparison of island tunes from the
analytical calculation and simulation

Resonance
order

p=8 p=10 p=12 p=14 p=16

Qx 0.6236 0.5986 0.5819 0.57 0.5611

Analytical
calculation

0.0073 0.0066 0.0059 0.0049 0.0041

Simulation 0.0047 0.0054 0.0055 0.0050 0.0044

Table 2:  Analytical calculation of island widths

Resonance
order p=8 p=10 p=12 p=14 p=16

Full island
width 7.5 5.2 3.8 2.7 1.9
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Figure 3:  Beam tail distributions in transverse
amplitude space: a) qx=0.6236 for p=8 resonance, b)
qx=0.5986 for p=10 resonance, c) qx=0.5819 for p=12
resonance, d) qx=0.57 for p=14 resonance, and e)
qx=0.5611 for p=16 resonance.

2  GAS SCATTERING SIMULATION

2.1  Analytical Calculation and Simulation

At very large amplitude where beam-beam kick is
weak, the lifetime is dominated by gas scattering  or other
physics effects rather than beam-beam. This was not
included in previous tail simulation code, which gives
unrealistic long lifetime at very large amplitudes.  Gas

scattering effect was included in a similar code[4], and is
now included in our code.

Small angle nuclear Rutherford scattering is well
understood physics.  The cross section of an electron
scattered into angle θ is given by
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where Z is the atomic number of gas atom, γ is the
energy of incident electron, and re is the classical electron
radius.

To estimate the lifetime limited by the aperture in one
transverse direction, we found the number of electrons
scattered by an angle larger than θx,min:
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where Ne is the number of electrons, Ngas is the gas
density, and C is the circumference of the storage ring.  

The projected angle θx is related with aperture Ax in

average by θx
2 = Ax

2 ε x
βx

, where ε x  is the emittance and

βx  is the average β-function.  Therefore, the lifetime
from gas scattering can be written as a function of
aperture:
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where c is the speed of light.  Take the PEP-II LER as an
example, the average horizontal β-function is 15 meters,
the emittance is 64 nm, the energy γ=6066, and the gas
density at 10-8 torr, 300K is 3.22×1014 m-3. With
Z=7.5, we have:

τ=582.5Ax
2
. (4)

In our beam-beam lifetime simulation program[1],
boundaries are introduced to track large amplitude
particles.  The flux of particles crossing the boundaries
due to nonlinearity was obtained from previous tracking
and used as the boundary condition. In modeling beam-gas
scattering, the scattered particle is inserted at boundaries as
an additional part of boundary flux.  Typically, the
scattering flux is much smaller than the flux due to
nonlinearities.  Therefore, there is no impact on the
original part.  In the code, we first calculate the
probability of a particle scattering across the boundary.
Then, at each turn, a random number is generated to
determine whether a particle scattered across the boundary.
When a scattering event happened, four more random
numbers are generated.  Two of them provide the
scattering angle coordinates, and the other two determine
the betatron phase advances to the IP.  Finally, the
coordinates are transferred to the IP and inserted as a
boundary-crossing particle.

2.2  Simulation Result

Figure 4 shows the simulated and analytically
calculated lifetime from gas scattering only.  They have a



good agreement.  Under 5σ, the simulation shows the
lifetime due to the aperture cutting into the Gaussian
distributed core which the analytical calculation does not
include.

Figure 5 gives the simulated lifetime versus vertical
aperture curves for the scattering only, beam-beam only
and both beam-beam and scattering cases.  It is obvious,
under this condition, the two effects are simply combined.
At small amplitudes, the beam-beam dominates, while at
the large amplitudes, the gas scattering dominates.  This
is contradictory with other studies[4].  The source of the
contradiction  is not yet understood.  So far we haven't
observed any case that the two effects interfere and
enhance lifetime problem.  However, we have found when
a nonlinear lattice with a small dynamic aperture is
involved, the combination of the three effects results in a
worse lifetime.
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Figure 4.  Comparison of lifetime calculated by
simulation and analytical calculation.  Plots show the
lifetime versus vertical apertures.
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Figure 5.  The lifetime versus vertical apertures.  The
lifetime is computed under the condition of: a) with gas
scattering but no beam-beam interaction;b) with both
beam-beam and gas scattering; and c) with beam-beam but
no gas scattering.  The tunes are qx=0.57 and qy=0.64.
When beam-beam turned on, the beam-beam tune shifts
are ξx=0.037 and ξy=0.033.

3   PARASITIC CROSSINGS AT PEP-II
PEP-II is a multi-bunch collider with head-on

collisions.  In each ring, bunches are spaced by 4 nsec.
At the interaction region, two beams are separated by the
bending magnets near the IP, as well as other magnets,
taking advantage of the two beams having different
energies.  However, due to the close bunch spacing, the
bunches will meet at places other than IP before they
move into the separate rings.  The parasitic crossings give
strong kicks to large amplitude particles of the other
beam, which results in a lifetime problem.  The
simulation program is basically the same as used in
previous sections, but two single slice kicks are added on
both sides of the main beam-beam kicks.
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Figure 6.  Tail distributions with parasitic separations:
(a) 2 mm; (b) 2.3 mm; (c) 2.5 mm; (d) 3 mm; (e) 3.5
mm.

The tail distributions with different separations are
shown in Figure 6.  The lifetime becomes bad at 2.3 mm
separation.  In terms of beam size, this separation
corresponds to 7.7 σ.  The designed separation is 3.5 mm,
which is equivalent to 11 σ in horizontal direction.  The
simulation results conclude that the current design is safe
in terms of the parasitic crossings.
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