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ABSTRACT

Nonlinear space charge forces of high intensity
beam produce strong emittance growth in linear focusing
channel due to mismatching of the beam profile with
focusing field. To obtain matching conditions for a beam
with an arbitrary distribution function, it is necessary to
accept that the potential of the external focusing field is a
highly nonlinear function of radius. The solution for
external potential is obtained from the stationary
Vlasov's equation for beam distribution function and
Poisson's equation for electrostatic beam potential. Ideal
way to create required potential distribution is a plasma
lens with specific distribution of the opposite charged
particles. Another variant is a quadrupole four vanes
structure with higher order multipole component. In that
case the matched beam profile has to be close to square,
instead of the conventional circle beam cross section. An
analytical approach is illustrated by results of a particle-
in-cell simulation.

1  INTRODUCTION

Intense particle beams exhibit strong emittance
growth and beam halo formation in the linear focusing
channel due to a mismatch between the beam profile and
the focusing field (see fig. 1). This phenomenon limits the
value of beam brightness and results in particle losses. In
the next generation of intense particle accelerators the
beam emittance growth will have to be suppressed.
Recently [1,2] it was shown, that the emittance of a high
brightness beam can be conserved in a highly nonlinear
focusing field. Such a focusing field requires a linear
function of radius near the axis that drops to a nonlinear
function further from the axis. The ideal way to create the
required potential distribution is by using a plasma lens
with a specific distribution of particles with the opposite
charge. Another way utilizes a quadrupole structure with
a higher order (duodecapole) field component, where
approximate matched conditions for the beam can be
obtained. This paper studies the behavior of a space
charge dominated beam in an uniform four vanes
quadrupole line with small value of phase advance per
period of particle oscillation. In such systems the
envelopes of the matched beams are close to constant.
This makes it possible to consider the z-independent
process and treat the problem analytically. As shown
below, to match the non-uniform beam with quadrupole
line , two problems have to be solved: (i) to introduce the
multipole field component of 6th order; (ii) to truncate
beam profile as a 45o skewed square.

Fig. 1. Emittance growth of the 150keV, 100mA, 015πcm
mrad proton beam in a uniform four vanes quadrupole

line with field gradient 50kV/cm2 and frequency
270MHz.

2  MATCHING OF A BEAM INTO THE
UNIFORM FOCUSING CHANNEL

Self-consistent matched conditions for a beam
with an arbitrary distribution function in a uniform
focusing channel have been obtained from two principles:
Vlasov's equation for time-independent distribution
function and Poisson's equation for space charge potential
of the beam [1,2]. The realistic beam distribution is
characterized by a high concentration of particles near the



axis and declining particle density towards the periphery
of the beam. Let us consider a beam of particles with a
parabolic distribution function, charge q and mass m,
which is close to an experimentally observed beam
distribution. In this distribution, the phase space density
of particles monotonically decreases from the center of
the beam until reaching the boundary of 4-dimensional
hypervolume:
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where I is a beam current, β is a longitudinal particle
velocity, R = 2 <x2>   is a beam envelope, po=2 <px

2>
is a double rms beam size in phase space, and
ε = R po/(mc)  is a normalized RMS beam emittance.
Space charge density ρb and space charge potential of the
beam Ub are defined by the expressions:
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where Ic =4πεo mc3/q = (A/Z) 3.13 x 107 Ampere  is a
characteristic value of beam current. In ref. [2] the
required potential of the focusing structure to maintain
given distribution function was found:
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The required nonlinear focusing field can be created by a
distribution of the opposite charged particles along the
focuser (plasma lens). A more simple way employs a
quadrupole channel with multipole components.

3  MATCHING OF THE BEAM INTO THE
FOUR-CONDUCTOR QUADRUPOLE

LINE WITH DUODECAPOLE
COMPONENT

In Ref.[2] it was shown that introducing
duodecapole component in pure quadrupole alternating-
gradient structure results in better matching of the beam
with the transport channel. Higher order terms in the
potential distribution produce nonlinear components,
which can be used to compensate for nonlinear space
charge forces. Let us consider an uniform four vanes
structure with potential
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where G2 is a quadrupole gradient, G6 is a duodecapole
component and ωo = 2πc/λ  is a RF frequency. Electrical
field of the structure is given by:

E(r,ϕ,t) =   [- ir (G2r cos2ϕ + G6r5 cos6ϕ)  +

                    iϕ (G2r sin2ϕ + G6r5 sin6ϕ)] sinωot           (6)

Particle trajectories  in the field (6) can be represented as
a combination of the slow variation of particle position
and fast oscillations with small amplitude. The problem
of averaging of particle motion in fast oscillating field

E(r,t) =   Eo(r) sin ωot was analyzed in ref. [3, 4, 5].The
oscillating field creates an effective scalar potential:
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which describes the averaged (slow) motion of particle.
For considered structure the effective potential is:
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where a is a radius of structure, µο  is a smoothed
transverse oscillation frequency and ξ  is a normalized
ratio of field components:
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The effective potential is an axial - nonsymmetrtic and a
highly nonlinear radius function. Let us compare potential
(8) for ϕ=0 with required axial -symmetric potential (4).
Linear focusing parts of the field have to be the same,
which gives the value of quadrupole gradient:
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To define the value of G6, let us assume, that the values
of electric fields Eext = - ∂Uext/∂r and Eeff = - ∂Ueff/∂r are
equal at the boundary of the beam distribution r = 2R.
The terms proportional to r2, vanish due to the adopted
condition (10). The remaining terms give the expression
for duodecapole component:
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Note that the duodecapole component has to be the
opposite of the quadrupole component, i.e. the absolute
value of the field is reduced in the x and y directions as
compared with linear function of radius.

Analysis of the potential function F(r,ϕ) shows, that
for a small radius, the equipotential lines F(r,ϕ) = C are
close to circles, because only the quadratic term r2 in (8)
is essential. With larger radius the equipotential is close to



a 45o skewed square. This suggests, that the matched
beam should also have the square shape (see fig. 2).

Self-consistent computer simulations using particle-
in-cell code BEAMPATH were done to verify the
matched conditions of the beam, obtained from the above
consideration. Parameters of the beam and of the structure
were chosen  the same as in fig.1. Introducing required
duodecapole component with the value of G6 =-

1.4kV/cm6 results in change of the shape of electrodes
(see fig.2 ).  The beam profile in real space x-y was
truncated to be a skewed square with the  maximum beam

size Rmax = 2.5 <x2>  =1.25 R. The beam sizes as well
as the value of beam current and initial value of beam
emittance were the same in  simulations, presented in
figs. 1,2.

As shown at figs.1, 3 the beam in pure quadrupole
channel experience noticeable emittance growth. Initial

value of emittance growth rate is 7.10-4 π cm mrad
cm

. After

transport distance z=30 cm, which correspond to one
quarter of transverse oscillation, the beam emittance
achieved the value 0.177 π cm mrad. Finally the beam
emittance oscillates around stable value of 0.17 π cm
mrad. In a nonlinear structure (see figs. 2, 3), the initial

value of emittance growth rate is 2.5.10-4 π cm mrad
cm

,

which is substantially smaller than for beam transport in a
pure quadrupole channel. The final value of beam
emittance is 0.162 π cm mrad, which indicates the better
matching conditions than in a pure quadrupole focusing
channel. The final beam emittance and beam profile are
matched without serious phase space portrait distortion.

4  CONCLUSIONS

Matching of a bright beam into a transport focusing
channel, while avoiding beam halo formation in phase
space, is considered. A plasma lens with specific
distribution of particles along the channel provides an
ideal way to create an appropriate non-linear focusing
field. Another way employs a four-conductor quadrupole
structure with a multipole component of the 6th order
(duodecapole component). In that case, the initial
matched beam profile has to be close to square, instead of
the conventional circle beam cross section.
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Fig. 2. Matching of the 150keV, 100mA, 015 π cm mrad
proton beam in a uniform four-conductor quadrupole line
with field gradient 50kV/cm2, duodecapole component
-1.4 kV/cm6 and frequency 270MHz.

Fig. 3. Beam emittance growth in a four vane structure
with pure quadrupole field (up) and in quadrupole field
with duodecapole component (bottom).


