
FEEDBACK SYSTEMS AT DESY

R.-D. Kohaupt, DESY, Hamburg, Germany

Abstract

The theory of longitudinal and transverse feedback
systems is presented including the fact that the
components of the systems are localized.
The development of the systems using digital methods of
data processing is described.
The behaviour of all feedback systems at DESY is
discussed.

1  THEORY OF MULTI BUNCH
FEEDBACK SYSTEMS

    The multi bunch systems can be described by a set of
N differential equations, N being the bunch number
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   In this equation, t and Ω are the time and the
synchrotron frequency in the longitudinal, the quasi-time
and the betatron frequency in the transverse direction.
The forces in the ring are described by V, which is a
linear function of the dipole displacements xµ of the
bunches. The forces account for all instabilities. The
forces Fµ are added to take care of an active damper
system, which will be discussed later. Finally Dµ (t) is an
external force added in order to test the system by
external excitation. Passing to the domain of complex
frequency ω equation (1) becomes:
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ω0 being the revolution frequency. The Fourier

transforms x
∧

µ ( )ω are closely related to the z-transform

of sampled data due to the fact that all exciting objects

are localised. This guarantees that no „unphysical Q-
values exist.
   The equation (2) can be diagonalized in terms of the
„normal mode“ vectors, leading to the complex
eigenfrequencies of the systems. In order to solve the
instability problem, the forces Fµ have to be chosen in
such way that all modes are stable.
   As we know from the instability theory, any resistive
impedance around the revolution line causes opposite
instability behaviour of the „upper“ and the „lower“
mode, therefore in order to damp all the modes we need
a sort of „notch“ filter giving opposite phases below and
above the revolution line. This notch filter is the
essential part of the forces Fµ.

2  REALISATION OF THE FEEDBACK
   Within the bandwidth of the feedback system the
transfer function has to be very flat:
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(ω, ω' are different frequencies in the frequency range of
the feedback systems.) The transfer function has to
change sign at the revolution frequency.
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After the beam oscillations have been picked up, the
signal passes the detector. At the output the analog data
will be converted to digital information. The „notch
filter“ properties of the transfer function are prepared by
a digital filter unit. Going back to analog data, the
signals are transferred to a chain of amplifiers. At the
end of the chain a power amplifier drives the active
device which influences the beam. An example for an
„adjustable notch filter“ is given by
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where ϕ can be adjusted such that the total transfer
function of the feedback system corresponds to optimum
damping. The function (6) can be realised by digital
FIR-Filters:
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In this relation x and g are the input and output data
respectively, TB denotes the time between adjacent
bunches and T is the revolution time. Finally, the Tl

represents the filter coefficients. In order to realise (6)
one finds:
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3  OBSERVATIONS
    In order to get information about the stability of all
the modes it is possible to excite the beam on the
different mode frequencies. The experiments were done
for PETRA, HERA and DORIS.
  Without the feedback loop the damping times were
10 msec for PETRA, HERA and 1 msec for DORIS.
When the feedback system was closed, the damping
times were 100 µsec, 0.5 msec and 100 µsec
respectively.

4  THE DESY III FEEDBACK SYSTEM
In order to damp the longitudinal instability in DESY

III, we developed a completely new feedback system.
We detected the phase displacement of the eleven

proton bunches for each single bunch. This detection
signal is the input of a multiplexer, which arranges the
displacements according to the adjacent bunches. This
information is led to four transfer kickers at places where
the dispersion is different from zero.

The closed orbit then follows adiabatically the
motion of the phase displacement, giving a damping
without an additional 90°-phase shift. The damping
system allows the transfer of 180 mA protons from
DESY III to PETRA.

5  STRONG STABILITY
  As far as damping rates and growth rates are
concerned, one would naively conclude that the relation,

δ δD gf (9)

where δD and δ
g
 are damping and growth rates

respectively, leads to a stable beam. However, even
when the beam is „stable“ there is still a strong coupling
between the bunches. As a consequence, there is an
energy transfer between the bunches. If a single bunch is
excited, its energy is coupled to all the other bunches
during the time the whole system is damped. If nearly all

the bunches are excited with a tolerable amplitude, the
energy can be transferred to a small number of bunches,
so that their oscillation amplitude exceeds the tolerable
limit. This internal „impact“ is based on the real
frequency shifts which are in general different for all
modes and which are not compensated by the damper
system. This „overshoot“ effect increases if the number
of bunches increases. The remaining damping rate at
high currents has to be sufficiently large in order to keep
the overshoot effect small. Since the real frequency
shifts are of the same order as the growth rates (roughly)
and since these phase shifts can be positive and negative,
we demand:

δ δ δD g g− f 2 (10)

so we obtain

δ δD gf 3 (11)

instead of (9). The overshoot phenomena are still under
theoretical investigation. For PETRA and HERA the
feedback systems satisfy (11).
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