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Abstract

Early indicators of long-term stability, based on short-term
tracking data, are considered in hadron colliders, such as the
CERN-LHC. Two early indicators are analysed: the Lya-
punov coefficient and the variation of the instantaneous non-
linear tunes. A threshold is associated to each indicator, by
which a simple and automated procedure can be defined to
select chaotic from regular trajectories. The methods are
checked against long-term tracking for a linear lattice with
a sextupole (Hénon map). The results show that rather pre-
cise long-term dynamic aperture estimates can be worked
out using short-term tracking data. The method is success-
fully applied to identify the dynamic aperture of the CERN-
LHC in realistic situations.

1 INTRODUCTION

Fast indicators of long-term stability are very useful to
speed up the numerical simulations of the dynamic aperture
in hadron colliders, that for a large machine such as the
planned LHC should be carried out for more than 107 turns.
One approach is based on the Lyapunov exponent, first ap-
plied to celestial mechanics [1, 2, 3] and then to accelerator
physics [4, 5]. It allows one to select chaotic from regular
motion with a limited number of turns: hence it provides a
criterium for long-term stability under the assumption that
all the chaotic particles are unstable. Another powerful in-
dicator is the variation of the instantaneous tune [6] that can
provide an analogous criterion. An alternative approach to
the techniques presented in this paper, is based on the spirit
of the Nekhoroshev theorem and on its generalization to
symplectic mappings [7]: the basic idea [8] is to compute
an invariant of motion with a high precision, and to numer-
ically evaluate the drift in the invariant space for a limited
number of turns, using this value to extrapolate a bound for
a large but finite number of turns.

Our aim is to propose an automatic procedure to deter-
mine long-term particle loss. This approach relies on the
definition of thresholds that depend on the number of turns.
Moreover, we carry out an accurate check of the early indi-
cators predictions against long-term particle loss, making a
statistical analysis for a large ensemble of initial conditions.
We considered a 4D Hénon map, the model of the SPS lat-
tice used for diffusion experiments, and a four-dimensional
model for the version 4.1 of the LHC lattice: we show that
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one can establish thresholds for defining automatic proce-
dures for long-term estimates, and that the indicators are
predictive.

2 AUTOMATED EARLY INDICATORS

2.1 Lyapunov exponent

The Lyapunov exponent is an indicator related to the
rate of divergence of two neighbour particles. Let
x = (x; px; y; py) be an initial condition at a given section
of the machine, and let x(n) be its phase space position
after n turns. If we consider a neighbour initial condition
x̂ = x + �, with j�j � 1, then the estimate of the maximal
Lyapunov exponent at the n-th turn reads
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If the orbit is regular, then jx̂(n) � x
(n)
j is linear with n,

and therefore �(n) tends to zero for n!1. If the orbit is
chaotic, then jx̂(n)� x

(n)
j is exponential with n and there-

fore �(n) tends to a positive limit.

2.2 Tune variation

Another method to select regular from chaotic trajec-
tories [6] is based on the variation of the instantaneous
tune. Let �x(m : n) and �y(m : n) be the nonlinear
tunes in the x and y plane respectively, computed over the
m;m + 1;m + 2; :::; n turns; then we define the variation
of the tune � (n) over two successive samples of turns
1; :::; n=2 and n=2 + 1; :::; n as
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[�i(1 : n=2)� �i(n=2 + 1 : n)]2: (2)

For regular trajectories, the tunes are well defined and there-
fore � (n) converges to zero in the limitn!1. For chaotic
trajectories, the tune is not well defined and therefore � (n)
is bounded away from zero. In order to use this method, it
is crucial to have very precise tools to evaluate the tune also
with a limited number of turns [6, 9, 10].

2.3 Thresholds for long-term prediction

We propose the following automatic procedure to forecast
long-term particle loss: if the early indicator evaluated at n
turns is greater than a threshold �(n), then we assume that
the particle will be lost. Otherwise, we consider it as stable.



All the regular particles have a Lyapunov exponent �(n)
that converges to zero according to the law 1=n log(An),
and the constant A is related to the derivative of the nonlin-
ear tune with respect to the amplitude [11]. Therefore we
define the threshold for the Lyapunov as

��(n) =
1

n
log(A�n): (3)

The threshold for the tune variation has been fixed to

�� (n) =
A�

n
; (4)

this can be justified by heuristic arguments: in fact, the de-
pendence on the inverse of the number of turns is an upper
bound to the precision associated to the tune estimate with
n turns for generic signals.

We will optimize the choice of the constants A� and A�

through the check with long-term tracking for the Hénon
map, and we will show that the same values give good long-
term estimates also for the LHC models.

3 ANALYSIS OF THE HÉNON MAP

We first analysed a linear lattice with a sextupolar kick
(Hénon map), setting the linear tunes to 0:168 and 0:201

respectively, i.e., very close to a double resonance. We
carried out an extensive sampling of initial conditions, and
we computed the orbit for 107 turns. Both early indica-

Figure 1: Distribution of the Lyapunov for the Hénon map;
lost particles are marked in black.

tors were evaluated for four different number of iterates:
n1 = 128, n2 = 512, n3 = 2048 and n4 = 8192. In
Figure 1 we plot the histogram of the distribution of the
Lyapunov exponents �(n=2), computed over the grid of

intial conditions, for n = n1; n2; n3; n4. We marked in
black the initial conditions that are lost before 107 turns.
The distribution features a high peak with a sharp fall on
the right part. The abscissa of the fall separates rather
well the stable from the unstable particles, and therefore
it appears to be the natural threshold of the Lyapunov. In
fact, it turns out that the threshold evaluated numerically
through the four histograms is very well interpolated by Eq.
(3), with A� = 0:15. For low number of turns (n = 128

and n = 512), most of the particles whose early indicator
prediction fails are unstable with Lyapunov lower than the
threshold (intermittency). On the other hand, for higher
number of turns (n = 2048 and n = 8192), most of the
particles whose early indicator prediction is wrong are
stable with large Lyapunov (stable chaos). This shows
that for very large n the Lyapunov leads to a systematic
underestimate of the dynamic aperture, since it assumes
that all the chaotic particles will be lost. In Figure 2 the

Figure 2: Distribution of the tune variation for the Hénon
map; lost particles are marked in black.

same histograms shown in Figure 1 are plotted for the
tune variation. The distributions are wider: this is a good
feature since it implies that the long-term estimate is less
sensitive on the threshold. On the other hand, there is no
specific pattern that allows one to define a threshold without
carrying out the long-term analysis. Using the long-term
data, we empirically fixed the threshold using Eq. (4),
with A� = 0:1. For n = 2048 and n = 8192 a very
large fraction of the particles has a tune variation that is
very small (less than 10�7); no long-term loss is observed
for these particles. This is another interesting feature that
could allow one to define a conservative lower bound to
long-term stability.

It must be pointed out that, contrary to the Lyapunov anal-



ysis, the threshold parameter of the tune variation has been
optimized through long-term tracking; hence the early in-
dicator cannot be considered predictive for the Hénon map
model. We will show in the next section that using the same
threshold one obtains good estimates for the LHC.

4 APPLICATIONS TO LHC

We analysed a realistic model of the LHC that includes all
field shape imperfections expected in the superconducting
magnets. The only relevant approximation is that the syn-
chrotron motion is neglected. Due to the complexity of the
model, we had to limit the long-term tracking to 105 turns.
The distributions of the Lyapunov and of the tune variation
are shown in Figs. 3 and 4 respectively. Their similarity
with the results for the Hénon map is impressive; it must be
also pointed out that in this case the tune is far away from
low-order resonances, whilst for the Hénon case it was set
very close to resonances (6,0) and (0,5) to enhance the long-
term effects. The same thresholds hold for the LHC case. In
comparison with the results of the Hénon map, now a larger
number of particles are stable but chaotic. This is probably
due to the limited number of turns used in long-term track-
ing. Analogous simulations, carried out for the SPS lattice
used for diffusion experiments, has shown very similar re-
sults (see Ref. [14] for a detailed discussion).

Figure 3: Distribution of the Lyapunov for a 4D model of
LHC; lost particles are marked in black.

5 CONCLUSIONS

We have shown that it is possible to provide automated pro-
cedures to determine the long-term stability using either
Lyapunov exponents or the tune variation. The thresholds

Figure 4: Distribution of the Tune variation for a 4D model
of LHC; lost particles are marked in black.

for the early indicators are found to be the same in three dif-
ferent models: Hénon map, SPS and LHC. The use of these
methods could be very effective for taking into account the
long-term behaviour for situations where a lot of configura-
tions have to be analyzed, for instance, in testing the valid-
ity of a sorting procedure [12, 13]. A check of the effective-
ness of these techniques for the six-dimensional motion is
in progress.
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