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ABSTRACT

Since space charge waves on a particle beam exhibit
both dispersive and nonlinear character, solitary waves or
solitons are possible.  Dispersive, nonlinear wave
propagation in high current beams is found to be similar
to ion-acoustic waves in plasmas with an analogy between
Debye screening and beam pipe shielding.  Exact
longitudinal solitary wave propagation is found for
potentials associated with certain transverse distributions
which fill the beam pipe.  For weak dispersion, the waves
satisfy the Korteweg-deVries (KdV) equation, but for
strong dispersion they exhibit breaking.  More physically
realizable distributions which do not fill the beam pipe are
investigated and shown to also satisfy a KdV equation for
weak dispersion if averaging over rapid transverse motion
is physically justified. Scaling laws are presented to
explore likely parameter regimes where these phenomena
may be observed experimentally.

1  SOLITARY WAVES AND
SOLITONS

Nonlinearity in wave propagation typically leads to
steepening phenomena.  For example, consider the simple
wave equation

ut + (1 + u)ux = 0 (1)
which has the implicit solution [1]

u(x, t) = f (x − (1 + u)t) (2)
where f is an arbitrary differentiable function.  Note that
the velocity, (1 + u ), depends on the amplitude, and in
particular, higher amplitudes propagate faster.  If f
describes a localized distribution, the peak value will tend
to overtake lower values, and steepening and breaking of
the pulse and formation of a shock will result.  On the
other hand, if the velocity depends strongly on wavelength
(dispersion), a localized distribution tends to spread.  A
solitary wave results when the nonlinear steepening is
canceled by the dispersive spreading, yielding a localized
disturbance which propagates without distortion.  Since
solitary waves of different heights will generally travel
with different velocities collisions can occur.  The term
soliton describes solitary waves which maintain their
identity and shape after collision.  

2  SPACE CHARGE WAVES
Space charge forces can produce longitudinal density
waves in low momentum spread, charged particle beams.
For a uniform, non-relativistic beam of radius a  in a
uniform beam pipe of radius b, the propagation is
nondispersive in the linear, long wavelength
approximation.    The wave velocity vp is

vp = ω
k

= e2λog

4πεom
 (3)

where ω  is the mode frequency for wave number k, e is
the electron charge, λo is the unperturbed linear charge

density, g  is a geometric factor depending on particle
distribution and pipe radius, εo  is the permittivity of free

space, and m  is the mass of the beam particles.  The
associated force is given by

F = − ge2

4πεo

∂λ
∂z

(4)

for density λ.  In k-space, the spatial Fourier transform

F̃ ∝ ikλ̃ .  More generally, the Green’s function for a
cylindrically symmetric pipe is

G(ρ, z; ′ρ , ′z ) = 1

4πεo
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where xn  is the nth zero of the Bessel function Jo.

Consider a distribution of the form Jo(x1ρ/b)exp(ikz).

In a linearized fluid model, this function describes a
perturbation eigenmode of a uniform beam filling the
beam pipe.  The underlying force law is modified from

ik → ik

1 + αk 2 (6)

where α  = (b/x1)2.  The phase velocity

vphase =
vp

1 + αk 2
(7)

now shows wavenumber dependence or dispersion.
Expansion of the denominator of (6) for small α
generates a third derivative term (-ik3) which is suggestive
of the structure of the KdV equation,

ut − 6uux + uxxx = 0 (8)
In fact the force law of (6) represents a simple exponential
rolloff in position analogous to Debye screening in
plasma ion-acoustic waves where solitary-wave behavior
has been modeled and observed [2].  Additionally,
simulation studies of water waves [3], which are driven by
the same basic force law, show soliton-like behavior; i.e.,
preservation of identity after collision.

3  1-D NONLINEAR FLUID MODEL
As a first step in understanding the interplay of

nonlinearity and dispersion for space-charge-dominated
beams, a 1-D nonlinear cold fluid model [4] of a uniform
beam with the force law given in relation (4) is described.
Some possibly important transverse effects may be lost,
but this solvable model provides a good footing for further
considerations.  The fluid equations are
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(nv) = 0 (9)
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= − ∂Φ
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(10)

Φ̃ (k) = ñ1

1 + αk 2  (11)

n(x, t) = no + n1(x, t)  (12)

where n is the density; no, the unperturbed density; n1,

the perturbed density; v, the velocity; and Φ, the potential.
These equations are normalized to vp=√no.  At this point

we can parallel Davidson’s discussion of ion-acoustic
solitary waves [5], and look for solutions of the form
n1(qx -ωt), v(qx -ωt), etc. which rolloff at ±∞.  Equations

(9)-(11) imply that
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Bringing the denominator of the right hand side of
equation (11) to the left hand side yields the second order
differential equation

Φ − αq2 ′′Φ = n1 = no

1 − 2(
q

ω
)2Φ

− no

               

 (15)

On integrating, we finally have
αq2( ′Φ )2
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where the integration constant has been chosen to yield a
localized solution with the derivative going to zero at
infinity.  Periodic solutions also exist.  This relatively
simple equation has been integrated numerically for Φ to
yield the pulse shape of the self-consistent solitary waves
as a function of the parameter ω/q, the pulse velocity in
units of vp.  For the potential, the pulse shape is

reminiscent of the sech2 behavior of solutions of the KdV
equation.  In fact, a standard small parameter expansion [5]
of these fluid equations with (ω/q-1) as the small
parameter yields the KdV equation.  The peak values of Φ,
n, and v  are given by

Φpeak = 2(
ω
q

− 1) (17)

npeak = no

2
q

ω
− 1

(18)

vpeak = 2(
ω
q

− 1) (19)

where the parameter √α, vp, and mvp
2 provide the length,

velocity, and potential scales, respectively.  Approximate
full width half maximum values for a few sample ω/q are
given in Table 1 in units of √α .

Table 1
Widths of Perturbations

          Velocity                  FWHM   widths
ω/q Φ v n
1.25 4.6 4.1 3.2
1.50 3.0 2.3 1.3
1.75 2.4 1.5 0.34
1.85 2.2 1.2 0.14

Note that the potential Φ  tends to the width 2.0 as the
strength parameter ω/q tends to 2.0.  The velocity also
remains finite, but the density becomes singular in this
limit and indicates that breaking and shock formation may
occur.  This is in contrast to the KdV equation where the
third-derivative term does not provide a high frequency
rolloff due to dispersion.

4  TOWARD MORE REALISTIC
CONFIGURATIONS

In Section 3, a particularly simple model was chosen
because it allowed a formulation in terms of an ordinary
differential equation.  For more general Green’s functions,
one must expect an integral or integrodifferential equation
to result.  As a first step in seeing whether soliton-like
behavior is expected for a realizable particle beam,  we
consider to what extent the form of expression (6) is a
reasonable approximation to the field behavior.  

Consider a transversely uniform beam of radius a in a
beam pipe of radius b.  The Fourier-transformed potential
at radius r is given by  

Φ̃ = 4ñ(k)

a2k 2 [1 − Io (kr)[kaK1(ka) + kaI1(ka)
Ko (kb)

Io (kb)
]] (20)

where the K and I are the usual modified Bessel functions.
As is well known, for small k, the field on axis reduces to
the long wavelength limit

(1 + 2log(b / a))ñ(k) (21)
and for large k to

4

k 2a2 ñ(k) (22)

This suggest that on axis the exact expression (20) can be
approximated by

Φ̃ ≅ 1 + 2log(b / a)

1 + k 2a2

4
(1 + 2log(b / a))

ñ(k)

.

(23)

In fact on axis, for a/b=0.5, the functions match within
several percent for all k.  The corresponding length scale
parameter is given by

α = a

2
1 + 2log(b / a) (24)

Off axis, one expects the (1 + 2 log (b/a))  term to be
modified by an additional (-r2/a2).  In addition, it is found
necessary to introduce extra k dependence in the
denominator of the form

1 + αk 2(1 + κexp(−γ k )) (25)

to yield fits at the several percent level, where κ and γ  are
fitting parameters. The exp(-γ|κ|) will induce spatial
smearing with a factor 1/(x2 + γ2).  If the r-dependence is
averaged over the assumed uniform beam profile, the
equation analogous to (15) has Φ′′   replaced by (Φ′′  +
κ(Φsmeared)′ ′).  For a/b  = 0.5, κ ≈ 0.3  and the



smearing length γ  ≈ b/10.  In this case, pulses of the
order of a  should remain well described by the simple
differential equation model.  The KdV equation remains
the weak dispersion limiting equation.  However, it is
clear that a rigorous description requires dealing with
integral or integrodifferential equations.

A second question involves the general appropriateness
of averaging over transverse motion.  The observable
desired is a large amplitude density pulse traveling
undistorted at velocities exceeding the linear wave
velocity.  From Table 1 and equation (24), it is expected
to have a length of the order of the beam dimension.  A
typical time scale for averaging would then be a/vp, the

time necessary for exchange of longitudinal energy along
the beam as the pulse moves to a new region.  In this
time, particles in the beam will have undergone
(vb/L)(a/vp)  betatron oscillations where L is the betatron

wavelength and vb is the beam velocity.  Averaging then

is reasonable if there has been significant betatron motion
as the pulse moves its width, or

a ≥ L
vp

vb
(26)

For example, for a beam size of 1 cm and (vp/vb) = 10-3 a

betatron period less than 10 meters is necessary.  Note
that the ratio (vp/vb)) is of the order of the required

longitudinal momentum spread for coherent longitudinal
motion.  Such values are not unreasonable, but do require
a long transport system for observation.  Clearly, the
precise weighting of the average remains an open issue.  

Wang, et al. [6] have observed that for space-charge
dominated beams (where the beam size is not determined
by the emittance, but by cancellation of the space-charge
and external focusing forces), longitudinal waves
propagate by increasing the beam radius rather than by
increasing the local 3-D density.  The resulting long
wavelength limit is g = log(b/a) because there is no
transverse variation of the longitudinal field within the
beam.  They have confirmed the conjecture
experimentally.  This effect suggests that transverse
averaging may not be important in this regime.  However,
the pulse lengths of their experiment were relatively long
compared to the beam diameter and thus not strongly
dispersive.  Also, the time scales involved are long
relative to the plasma frequency, which for stable beam
motion is comparable to the betatron frequency.  More
importantly, numerical evaluation of the associated
Green’s function shows that at short wavelengths the
fields do in fact have radial dependence.

A contrasting regime exists where only a small
fraction of a betatron oscillation occurs during motion of
the pulse.  The transverse motion is effectively frozen, and
the appropriate equation for possible solitons would be of
the form

Φ = ′r d ′r h(x, r; ′x∫ , ′r )(
no

1 − 2(
q

ω
)2Φ ( ′x , ′r )

− no )
(27)

where h is the potential Green’s function.  If a particular
solution Φ implies large transverse fields, transverse
oscillations may be important for a complete picture.

Other machine impedances such as resistive wall and
chamber discontinuities should be included to complete
the picture of nonlinear wave propagation.  For small wall
resistance, a slow exponential growth of the pulses is
expected [7, 8].  In addition, sequences of solitons may
form [9].  A series of localized resonators will generate a
(1/k)2  short wavelength behavior of the potential, but
since the resistive effects are no longer small,
extrapolations from the results presented are not as
straightforward.

5   CONCLUSIONS
A case has been made that longitudinal collective

effects, particularly those generated by space charge, can
exhibit solitary waves and possibly solitons.  Conversely,
the solitary wave concept should be a useful tool in
understanding nonlinear waves on particle beams.
Equations (24) and (26) delineate a likely regime for
observing such phenomena.
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