
CALCULATION OF TRANSVERSE RESISTIVE IMPEDANCE
FOR VACUUM CHAMBERS

WITH ARBITRARY CROSS SECTIONS

M.M. Karliner, N.V. Mityanina, D.G.Myakishev, V.P. Yakovlev
Budker Institute for Nuclear Physics, Novosibirsk, Russia

Abstract

Considering the resistive instability of betatron oscillations
of an multibunch beam in the storage ring, one can see that
the growth rate of the most unstable oscillation mode is
mainly determined by the transverse resistive impedance
at the most dangerous frequency. This frequency is !d =

!0(1��0), where !0 is a beam revolution frequency and �0

is the fractional part of the betatron tune �. At this very low
frequency, the skin depth can be sufficiently big to be of or-
der or even more than the vacuum chamber walls thickness,
therefore, the model of infinitely thick walls for the surface
impedance can not be applied for the transverse impedance
calculation. A computer code for calculating the electro-
magnetic field of an source - a dipole current - in the vacuum
chamber with lossy walls of arbitrary geometry was used for
dipole ohmic losses calculations. These losses determine
the actual transverse resistive impedance in approach of a
stationary current.

1 GROWTH RATES OF A MULTIBUNCH
BEAM

For symmetric multibunch beam transverse oscillation, the
growth rates due to resistive instability is determined by the
resistive impedance [1]:
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where �l is the growth rate of the l-th symmetric oscillation
mode with a phase difference between neighbour bunches
oscillation phases ��l = 2�l=nb; l = 0; :::; nb � 1;
nb is the number of bunches in the beam; !0 is the revo-
lution frequency; !0nb is the bunch repetition frequency;

 = �!0 is the betatron oscillation frequency; I is the av-
erage beam current; Vs is the synchronous particle energy
devided by the electron charge; Zt is the resistive transverse
impedance of the vacuum chamber multiplied by the aver-
aged beta function (R=�).

Usually, the transverse impedance is determined for a
beam deflected from the chamber axis as a whole, i.e. with
infinite longitudinal phase velocity vph of the current har-
monic. This definition works for the systems with the length
much shorter than the wave length, for example, for RF cav-
ities. But considering the resistive instability of the beam,
we deal with the whole length of the storage ring with �

oscillations along circumference and one should still check

the validity of applying the traditionally defined transverse
impedance.

In this traditional static approach, for a round vacuum
chamber with walls much thicker than the skin depth at low-
est spectrum frequency,

Zt(!) = Zt0(!) =
Z0w(!)
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;

where R is the average radius of the storage ring; c is the
light velocity; a is the inner radius of the vacuum chamber;
Z0 is the free space wave inpedance; w(!) =

p
�m=�m,

�m and �m are the magnetic permeability and dielectric per-
mittivity of metal chamber walls (with the account of walls
conductivity).

Due to the very rarefied spectrum of the multibunch beam
(with the dictance between neighbour spectrum lines nb!0),
the growth rate of the most unstable mode of betatron oscil-
lations can be estimated by the main term at the most dan-
gerous frequency !d = !0(1� �0) (�0 is the fractional part
of �).

But, looking at the spectrum of the current of the most
unstable mode, one can see that the most dangerous for the
instabilitycurrent harmonic I exp(i(!dt�kzz)) has a phase
velocity vph = �c with

� = k=kz =
1� �0

1 + [�]
�p � 1;

where [�] is the integer part of �, k = !=c and �p = vp=c,
vp � c is the velocity of particles.

For example, for LHC � = 70:3, !d = 8:5kHz and
� = 0:01� 1, the case very different from the static model
with � � 1, for which the transverse impedance is usually
considered.

Thus, there arises a problem to define the transverse
impedance for arbitrary � and, in particular, for � � 1. For
that, one should turn back to the growth rates and to see, in
which form it appears if phase velocities of all current har-
monics are taken into account.

In fact, we should find the fields induced by the dipole
current harmonic with arbitrary phase velocity and their in-
fluence on beam dynamics.



2 FIELD EQUATIONS FOR ARBITRARY
PHASE VELOCITIES

We consider Maxwell equations with a dipole current as an
source:

rot ~H �
@ ~D

@t
= ~Je; rot~E +

@ ~B

@t
= 0;

~Je = Jz(~r?)e
i(!t�kzz)~ez;

~D = ��0 ~E; ~B = ��0 ~H

In metals with a conductivity � �m = 1, �m = 1� i �
!�0

.
Writing separately longitudinal and transverse compo-

nents (relative z-direction) of the Maxwell equations, one
can express transverse fields components via longitudinal
one and get the equations for only longitudinal components
(denoting here ~
2 = 1=(1� �2��)):
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? Hz � k2Hz = 0:

The static case corresponds to � � 1, Hz = 0, E? = 0,
the boundary conditions are connect H? and Ez.

But at finite phase velocity, the solution should take into
account both Ez and Hz components.

3 THE GROWTH RATES WITH THE
ACCOUNT OF PHASE VELOCITIES.

Analogously to the method used in [1], we can analyse the
multibunch beam dynamics, but now, instead of the method
of eigen functions, we will assume that the fields induced by
all current harmonics are found in a way given in the pre-
vious section, with the account of their phase velocities. In
this way, we get the growth rates of symmetric multibunch
beam oscillations modes:
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Here Ez and Hz are the fields induced by the dipole cur-
rent harmonic oscillating in the plane xz with the unit dipole
moment; E0

z is the electric field induced in the chamber
with ideal walls. Zt(kz; !) defined here is the transverse
impedance with the account of its dependence on � = k=kz.

4 A MODEL OF A MULTILAYER
ROUND METAL TUBE

As an example, we will consider a a round metal tube with
thick walls with a coaxial tube with thin walls inside it (see
fig.1) and a dipole current (with a unit dipole moment) in
the middle with a dencity

Jz(~r?) =
1

�r20
�(r � r0) cos'; r0 � a

We assume that for low frequencies, at ka
�

� 1, the so-

lution in vacuum regions has a static form (the terms in Ez

and Hz proportional to r�1). In metal walls we assume a
wall curvature radius being much bigger than the skin depth,
therefore the plane solution can be used (exp(�ikr=w)).

Matching the tangential fields components at r = r0, with
the account of the source current, and at the metal bound-
aries and imposing the condition of fields decreasing at r!
1, we get the solution, which in common case has a not very
transparent form. But, one can simplify the result in some
important cases:

1. The case of a thick wall, jik(b� a)=wj � 1

In this case, it appears for any � � jwj

Zt = Zt0 =
2Z0wR

2

�(!=c)a3
:

The impedance has no dependence on � in the case of
thick walls, which corresponds to the previous results ([1]).

2. The static case, � =1.
In this case, Hz = 0. If j w

ika
j � 1; (b�a); (c� b)� a,

then, denoting T = tg(�k(b � a)=w), we get
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:

The impedance has a week dependence on the width of
the vacuum gap between walls.

3. The case of � � 1.
We assume � � 0:01, i.e. � � 1, but still� � jwj; jikbj;

In this case, the vacuum gap affects strongly on the fields.
It appears that for (c � b) = (b � a) = 1mm, a = 30mm,
f = 8:5kHz, j w

ika
j � 0:1 (steel walls)
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The impedance differs very much from the case of thick
walls. In the case of thin inner wall (jiT j � 1) it is inversly
proportional to its thickness.

5 THE FEM METHOD FOR THE
EXCITATION PROBLEM WITH ALL

FIELD COMPONENTS

The numerical method for the solution of the problem for-
mulated in the section 2, is modified on the basis of the
method given in [2] for determining eigen modes of RF cav-
ities. The main distinctions are:



1. The problem with an source current is solved instead
of the eigen value problem.

2. The two component problem is solved, implying at the
same time bothEz and Hz components, which are coupled
because the transverse fields matched at the boundaries are
expressed via both components, Ez and Hz.

3. The second order equations for Ez and Hz in the sec-
tion 2 are written in the form suitable for the FEM method,
which conserves the continuity of the tangential fielfs com-
ponents and does not contain the normal derivatives of Ez

and Hz.

6 AN EXAMPLE OF CALCULATIONS

As an example, we offer the picture of the magnetic field
lines in the vacuum chamber of LHC in static approach
(fig.2). The cross section has a complicated structure: the
steel vacuum chamber itself, the steel beam screen inside it
with copper coated inner wall, the outer surrounding mod-
elled as thick steel wall. The thickness of the steel walls of
the beam screen and of the vacuum chamber and the thick-
ness of the copper coating are sufficiently less than the cor-
responding skin depths in steel and copper at considered
frequency (8.5kHz). The field penetrates through the beam
screen at the regions without copper coating. The structure
of the fields depends on the vacuum gaps between the beam
screen, the vacuum chamber and outer surrounding and also
on the current harmonic phase velocity.

7 CONCLUSION

1. The necessity of taking into account the phase velocity
of the current harmonic is shown.

2. The small phase velocity of the dangerous current har-
monic is mostly important in the case of the multilayer wall
with the vacuum gap between layers, which are thinner than
the skin depth. For the vacuum chamber of LHC, it is im-
portant in the case of not everywhere copper coating.

3. The most unstable mode of the transverse oscillations
of the multibunch beam and the most dangerous frequency
should be found with the account of the phase velocities of
the current harmonics.

4. The FEM method is developed for the numerical so-
lution of the excitation problem for arbitrary phase velocity
of the exciting current harmonic, taking into account both
Ez anf Hz field components.

5. One should note that at small phase velocities, the ad-
dition due to the transverse components of the current can
be sufficient and should not be neglected. In future, this fact
should be proved and taken into account.
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Figure 1: Cross section of the round multilayer tube.

Figure 2: The field map of the field penetration between
copper coating stripes.
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