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Abstract

Considering theresistiveinstability of betatron oscillations
of an multibunch beam in the storage ring, one can see that
the growth rate of the most unstable oscillation mode is
mainly determined by the transverse resistive impedance
at the most dangerous frequency. This frequency iswg =
wo(1—1'), wherewg isabeam revolution frequency and v/
isthefractiona part of thebetatrontuner. Atthisvery low
frequency, the skin depth can be sufficiently big to be of or-
der or even more than the vacuum chamber walls thickness,
therefore, the model of infinitely thick wallsfor the surface
impedance can not be applied for the transverse impedance
caculation. A computer code for calculating the electro-
magneticfield of an source- adipolecurrent - inthevacuum
chamber with lossy walls of arbitrary geometry wasused for
dipole ohmic losses calculations. These losses determine
the actual transverse resistive impedance in approach of a
stationary current.

1 GROWTH RATESOF A MULTIBUNCH
BEAM

For symmetric multibunch beam transverse oscillation, the
growth rates dueto resistiveinstability is determined by the
resistive impedance [1]:
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where o isthe growth rate of thel-th symmetric oscillation
mode with a phase difference between neighbour bunches
oscillation phases A¢; = 2xl/ng, | = 0,...,np — 1;
ng 1S the number of bunches in the beam; wq is the revo-
[ution frequency; wony is the bunch repetition frequency;
Q = vwy isthe betatron oscillation frequency; I isthe av-
erage beam current; V; is the synchronous particle energy
devided by the electron charge; Z; istheresistivetransverse
impedance of the vacuum chamber multiplied by the aver-
aged betafunction (R/v).

Usudlly, the transverse impedance is determined for a
beam deflected from the chamber axis as awhole, i.e. with
infinite longitudinal phase velocity v, of the current har-
monic. Thisdefinitionworksfor the systemswiththelength
much shorter than thewave length, for example, for RF cav-
ities. But considering the resistive instability of the beam,
we dea with the whole length of the storage ring with v
oscillationsa ong circumference and one should still check

the validity of applying the traditionally defined transverse
impedance.

In this traditional static approach, for a round vacuum
chamber with walls much thicker than the skin depth at |ow-
est spectrum frequency,
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where R isthe average radius of the storagering; c isthe
light velocity; a istheinner radius of the vacuum chamber;
Zy isthe free space wave inpedance; w(w) = v/€m/thm,
€m and p,,, arethe magnetic permeability and dielectric per-
mittivity of metal chamber walls (with the account of walls
conductivity).

Duetothevery rarefied spectrum of the multibunchbeam
(withthe dictance between neighbour spectrum linesnywo),
the growth rate of the most unstable mode of betatron oscil-
lations can be estimated by the main term at the most dan-
gerousfrequency wq = wo(1 —v') (v isthefractiona part
of v).

But, looking at the spectrum of the current of the most
unstable mode, one can see that the most dangerousfor the
instability current harmonic I exp(i(wqt—k, z)) hasaphase
velocity vpn = Be with
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where[v]istheinteger partof v, k = w/cand 8, = v,/c,
vp ~ c isthevelocity of particles.

For example, for LHC v = 70.3, wg = 8.5kHz and
B = 0.01 < 1,the casevery different from the static model

with 8 > 1, for which the transverse impedance is usually
considered.

Thus, there arises a problem to define the transverse
impedance for arbitrary 8 and, in particular, for 3 < 1. For
that, one should turn back to the growth rates and to seg, in
which form it appears if phase velocities of al current har-
monics are taken into account.

In fact, we should find the fields induced by the dipole
current harmonic with arbitrary phase velocity and their in-
fluence on beam dynamics.



2 FIELD EQUATIONS FOR ARBITRARY
PHASE VELOCITIES

We consider Maxwell equationswith adipole current as an
source:
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Writing separately longitudinal and transverse compo-
nents (relative z-direction) of the Maxwell equations, one
can express transverse fields components via longitudinal
one and get the equationsfor only longitudinal components
(denoting here 42 = 1/(1 — B2ep)):
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The static case correspondsto3 > 1, H, =0, E; = 0,
the boundary conditionsare connect H; and E, .

But at finite phase vel ocity, the solution should take into
account both £/, and H, components.

3 THE GROWTH RATESWITH THE
ACCOUNT OF PHASE VELOCITIES.

Anaogously to the method used in [1], we can analyse the
multibunch beam dynamics, but now, instead of the method
of eigenfunctions, wewill assumethat thefieldsinduced by
all current harmonics are found in a way given in the pre-
vious section, with the account of their phase velocities. In
thisway, we get the growth rates of symmetric multibunch
beam oscillations modes:
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Here E, and H, are the fields induced by the dipole cur-
rent harmonic oscillatinginthe plane zz withtheunit dipole
moment; E? is the electric field induced in the chamber

with ideal walls. Z;(k,,w) defined here is the transverse
impedancewiththeaccount of itsdependenceon3 = k/k,.
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4 A MODEL OF AMULTILAYER
ROUND METAL TUBE

As an example, we will consider aaround metal tube with
thick wallswith a coaxial tubewiththinwallsinsideit (see
fig.1) and a dipole current (with a unit dipole moment) in
the middle with a dencity
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We assume that for low frequencies, at g—“ < 1, theso-
[utionin vacuum regions has a static form (ﬁ1e termsin E,
and H, proportional to #=1). In metal walls we assume a
wall curvatureradiusbeing much bigger than the skin depth,
therefore the plane solution can be used (exp(+ikr /w)).

Matchingthetangential fieldscomponentsat » = ro, with
the account of the source current, and at the metal bound-
aries and imposing the condition of fieldsdecreasing at » —
oo, weget the solution, whichin common case hasanot very
transparent form. But, one can simplify the result in some
important cases:

1. The case of athick wall, |ik(b — a)/w| > 1

Inthiscase, it appearsfor any 8 > |w|
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The impedance has no dependence on 3 in the case of
thick walls, which correspondsto the previousresults ([1]).

2. The dtatic case, 8 = co.

Inthiscase, H, = 0. If | 22| < 1; (b—a),(c—b) < a,
then, denoting 7' = tg(—k(b — a)/w), we get
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The impedance has a week dependence on the width of
the vacuum gap between walls.

3. Thecaseof B « 1.

Weassumeg ~ 0.01,i.e. 8 < 1, butstill 8 > |w|, |ikb|;
In this case, the vacuum gap affects strongly on the fields.
It appears that for (¢ — b) = (b — a) = 1mm, a = 30mm,

F = 8.5kHz, |22 | ~ 0.1 (steel walls)
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The impedance differs very much from the case of thick
walls. Inthecase of thininner wall (|¢T'| < 1) itisinversly
proportiona to itsthickness.

5 THEFEM METHOD FOR THE
EXCITATION PROBLEM WITH ALL
FIELD COMPONENTS

The numerical method for the solution of the problem for-
mulated in the section 2, is modified on the basis of the
method givenin[2] for determining eigen modes of RF cav-
ities. The main distinctionsare:



1. The problem with an source current is solved instead
of the eigen value problem.

2. Thetwo component problemissolved, implying at the
sametimeboth E, and H, components, which are coupled
because the transverse fields matched at the boundaries are
expressed via both components, E, and H,.

3. The second order equationsfor E, and H, in the sec-
tion 2 are written in the form suitable for the FEM method,
which conserves the continuity of thetangential fielfs com-
ponents and does not contain the normal derivativesof E,
and H,.

6 AN EXAMPLE OF CALCULATIONS

As an example, we offer the picture of the magnetic field
lines in the vacuum chamber of LHC in static approach
(fig.2). The cross section has a complicated structure: the
steel vacuum chamber itself, the steel beam screen insideit
with copper coated inner wall, the outer surrounding mod-
elled as thick steel wall. The thickness of the steel walls of
the beam screen and of the vacuum chamber and the thick-
ness of the copper coating are sufficiently less than the cor-
responding skin depths in steel and copper a considered
frequency (8.5kHz). The field penetrates through the beam
screen at the regionswithout copper coating. The structure
of thefields depends on the vacuum gaps between the beam
screen, the vacuum chamber and outer surrounding and also
on the current harmonic phase velocity.

7 CONCLUSION

1. The necessity of taking into account the phase velocity
of the current harmonic is shown.

2. Thesmall phase vel ocity of the dangerous current har-
monic is mostly important in the case of the multilayer wall
with thevacuum gap between layers, which are thinner than
the skin depth. For the vacuum chamber of LHC, it isim-
portant in the case of not everywhere copper coating.

3. The most unstable mode of the transverse oscillations
of the multibunch beam and the most dangerous frequency
should be found with the account of the phase vel ocities of
the current harmonics.

4. The FEM method is developed for the numerica so-
[ution of the excitation problem for arbitrary phase velocity
of the exciting current harmonic, taking into account both
E, anf H, field components.

5. One should notethat at small phase velocities, the ad-
dition due to the transverse components of the current can
be sufficient and should not be neglected. In future, thisfact
should be proved and taken into account.
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Figure 1: Cross section of the round multilayer tube.
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Figure 2: The field map of the field penetration between
copper coating stripes.
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