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Abstract

The energy spread in the beam due to rf amplitude and
phase errorsis cal culated, for multiple passes and off—crest
operation. The effects of the dlow phase errors and the ef-
fects of feedback systems are included in the calculation.
If an rms energy spread requirement is to be met, a final
formulagivesthe trade-off between slow and fast phase er-
rors, and amplitudeerrors. Phase and amplitudestability re-
quirements are derived for the CEBAF IR DEMO FEL.

1 INTRODUCTION

Ideally therf system istimed so the bunches arrive synchro-
nized with the rf; the bunch centroid (in phase) could coin-
cidewiththerf crest (on crest operation), or be at a phase ®;
with respect the crest of the rf wave (off—crest operation).

The beam emerging fromtheideal accelerator hasafinite
energy spread because of the finite energy spread at injec-
tionand because of thefinitebunch length. Inareal acceler-
ator where the effects of the longitudina wake are negligi-
ble, there are contributionsto the energy spread from volt-
age errors and (at least) two types of phase errors. These
two types of phase errors are distinguished mainly by the
time scale over which the error changes. In this paper, any
phase error at frequencies beyond the vernier system band-
widthiscalled afast phase error. Anexampleof afast phase
error is a phase difference between the voltage in a cavity
and the master oscillator phase line. The second type of
phase errorsare the onesthat change slowly enough that the
vernier system is able to respond. In this paper such errors
are called slow errors. Thermal expansion phaselineerrors
are examples of dow phase errors.

Inthefollowingthermsenergy spread isevaluated using
two suppositionsabout the cavity phase and voltageerrors.
An optimistic result is obtained by assuming that the phase
errorsare not correlated with the voltage errors and that the
different cavities areindependent. At the other extreme, we
pessi mistically assume that the errorsare totally correl ated.
The calculation is carried out for multiple passes and off—
crest operation. In the limit of single pass, on crest opera
tionwerecover earlier results[1]. We concludeby applying
the derived expressionsto ca cul ate rf phase and amplitude
tolerances for the specified energy spread, for the CEBAF
IR DEMO FEL.

2 ENERGY SPREAD CALCULATION

Let NV bethe number of cavitiesin the accelerator. The en-
ergy of an electron after k passes through the accelerator is
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where F,, isthe voltage set point of the n-th cavity, A4, is
the relative voltage error at the n-th cavity, F istheinjec-
tion energy, ®; isthe phase set point of the electron bunch
with respect to the crest of therf wave at the i-th cavity, ¢,
isthe slow phase error from the master oscillator to the n-
th cavity, ®, isthe injector phase offset, ® isthe injection
phase of the particle (dueto thefinite bunch length), and é,,
isthefast phase error to the n-th cavity. Thegoal isto com-
putetheenergy spread as afunction of the slow phaseerrors
@1y een ON.

When the cavity phase and voltage errors are uncorre-
lated the probability density functionis a product of thein-
dependent probability densities
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where () is the probability density function for the fast

cavity phase error and g(A) is the probability density for

the voltage error. The probability densities are normalized,

meaning that they give probabilities on integration. The

function F' isused to compute ensemble averages, e. g.
T= /TF(E, D 61, Ay, )dEADdEdA; ... .

The average energy is
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since [ Ag(A)dA = 0. I; can bere-expressed as
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where
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and /; isthe same integra as above except the cosine func-
tion is replaced by the sine function. The vernier sets @,
and the cavity excitations so that
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i.e. the energy gain of the accelerator is fixed to
E¢(cos®1 + ... + cos @) and the injector phase off-
set isset sothebunchisat aphase ®; duringpass 1, ..., &g
during pass k, of the accelerator as awhole. This means
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where C' = 3°F_ cos®; and S = Y1, sin ®;. Itisnow
possibleto solvefor the cavity sums:
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and S, is the same sum as above except the cosine
function is replaced by the sine function. .. is the
integral of cos (® + §) cos (P + ¢') over the probability

densities f(F,®), ¢(8) and ¢(¢'), I.s is the integra
of cos(® + 8)sin (P + &), Iz, and Iz, are integrals
of cos (¥ 4 6) cos (P + ¢) and cos (P + 68) sin (P + 6) re-
spectively, and I, = [ A? g(A) dA. Thereative rms
energy spread is given by the sum of four terms
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where I, iSthe energy spread at injection,
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where
Moo= CoCp(lee — I2) + S Sp(Iss — 17)
Ay = CpSy(Les + LI) + SpCp(Iye — I, 1.)
ki = C2(Ipee — Ioe) + S2(Iass — Lss)
ke = CpSn(Tacs — Ios) + SnCn(Tase — Ise)]

Thefirsttermineg. (9) isfromtheenergy spread at injection
and is negligiblein the IR DEMO. The second term gives
the contributionsfrom the finite bunch length and from the
injector phase error. Sincethese errors are the same at each
cavity (correlated errors) the resulting energy spread isin-
dependent of the number of cavities. Also the second term
is independent of the Slow phase errors.

Thethird term is due to the fast phase errors in theindi-
vidual cavities and dueto the fact that the bunchestraverse
the individual cavities with the dightly wrong phase be-
cause of the dow phase errors. This contribution vanishes
if the fast phase errors vanish sincein thiscase I.. = Is..,
etc. For fixed total energy thethirdtermisinversely propor-
tional to the number of cavities. The fourthterm inthe sum
isduetothe voltage errorsin the system and it isinversely
proportiona to the number of cavities, the usua result of
uncorrel ated errors.

Inthetotally correlated case where we assume that A, =
...= Ay and 8; = ... = é, the probability density is
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Theresult of calculating 7" isthe same as before. However,
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SincetheT; termis zero, thereis no dependency of there-
sult on the Slow phase errors ¢,,. The third term isa factor
of N larger than before, asis characteristic in the transition
from uncorrelated to correlated errors.

As an example, we assume gaussian distributions of er-
rors and obtain,

I. = exp(—03/2)exp(—0?/2)exp(—0c}/2)

I.. = [0.5+0.5exp(—20%)exp(—207)]exp(—o})
Le = [0.5—0.5exp(—20%)exp(—202)]exp(—o?)
Iee = 0.5+ 0.5exp(—203)exp(—207 )exp(—2073)
Ings = 0.5—0.5exp(—203 )exp(—207 )exp(—207)
Is = ILie=1Iy= I = I =0
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The effects of the finite bunch length and of the injector
phase error may be characterized by a single parameter
0? = 03 + o2, an “effective bunch length” which depends
onthe propertlmof the injector alone.

We now specify the vernier system in greater detail. As
an example assumethat al the cavitiesexcept one, them-th
cavity, are set so
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This means that Eq. (3) becomes
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to second order inthe small quantitiessy,..., and ®,. Inthe
above formula
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is approximately the square of the rms average of the slow
phase errors since &, isapproximately equal to theaverage
of the dow phase errors.

The two estimates give that the relative rms energy
spread satisfies
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and
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to fourth order in the small quantities. The two estimates
depend onwhether theerrorsare correlated (LH inequality)
or uncorrelated (RH inequality).

If weset S = 0 and C' = k for on crest acceleration and
k = 1 for one pass through the accel erator, the expressions
above become

1
Dl ~ 50’}1+

in agreement with previousresults[1].

3 CEBAF'SIR DEMO: AN EXAMPLE

Now we calculate the rf phase and amplitude tolerances
necessary to obtain 4 x 10~* energy spread at the end of
the IRFEL linac, where bunchesride 12.5° off crest and the
injection energy is 10 MeV and the final energy is42 MeV.
We assume an effective bunch length of o7 =3.96 x 10~*.
We then split the rest of the energy spread equally between
the phase error and amplitudeerror. Wefindthat thepermis-
siblerelativevoltagefluctuation o 4 inthecorrelated case to
be2.8 x 10~* and the permissible fast phase fluctuation o 5
to be 0.07°. The uncorrelated errorsarec 4 < 7.8 x 1074
and o5 < 0.2° assuming no vernier, as will be the case in
CEBAF'sIR DEMO FEL.
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