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Abstract

The energy spread in the beam due to rf amplitude and
phase errors is calculated, for multiple passes and off–crest
operation. The effects of the slow phase errors and the ef-
fects of feedback systems are included in the calculation.
If an rms energy spread requirement is to be met, a final
formula gives the trade-off between slow and fast phase er-
rors, and amplitude errors. Phase and amplitude stability re-
quirements are derived for the CEBAF IR DEMO FEL.

1 INTRODUCTION

Ideally the rf system is timed so the bunches arrive synchro-
nized with the rf; the bunch centroid (in phase) could coin-
cide with the rf crest (on crest operation), or be at a phase�i

with respect the crest of the rf wave (off–crest operation).

The beam emerging from the ideal accelerator has a finite
energy spread because of the finite energy spread at injec-
tion and because of the finite bunch length. In a real acceler-
ator where the effects of the longitudinal wake are negligi-
ble, there are contributions to the energy spread from volt-
age errors and (at least) two types of phase errors. These
two types of phase errors are distinguished mainly by the
time scale over which the error changes. In this paper, any
phase error at frequencies beyond the vernier system band-
width is called a fast phase error. An example of a fast phase
error is a phase difference between the voltage in a cavity
and the master oscillator phase line. The second type of
phase errors are the ones that change slowly enough that the
vernier system is able to respond. In this paper such errors
are called slow errors. Thermal expansion phase line errors
are examples of slow phase errors.

In the following the rms energy spread is evaluated using
two suppositions about the cavity phase and voltage errors.
An optimistic result is obtained by assuming that the phase
errors are not correlated with the voltage errors and that the
different cavities are independent. At the other extreme, we
pessimistically assume that the errors are totally correlated.
The calculation is carried out for multiple passes and off–
crest operation. In the limit of single pass, on crest opera-
tion we recover earlier results [1]. We conclude by applying
the derived expressions to calculate rf phase and amplitude
tolerances for the specified energy spread, for the CEBAF
IR DEMO FEL.

2 ENERGY SPREAD CALCULATION

Let N be the number of cavities in the accelerator. The en-
ergy of an electron after k passes through the accelerator is

T = E+

NX
n=1

En(1+An)

kX
i=1

cos (�i + �n � �0 +� + �n)

where En is the voltage set point of the n-th cavity, An is
the relative voltage error at the n-th cavity, E is the injec-
tion energy, �i is the phase set point of the electron bunch
with respect to the crest of the rf wave at the i-th cavity, �n
is the slow phase error from the master oscillator to the n-
th cavity, �0 is the injector phase offset, � is the injection
phase of the particle (due to the finite bunch length), and �n
is the fast phase error to then-th cavity. The goal is to com-
pute the energy spread as a function of the slow phase errors
�1, ..., �N .

When the cavity phase and voltage errors are uncorre-
lated the probability density function is a product of the in-
dependent probability densities

F (E;�; �1; A1; :::�N ; AN ) = f(E;�)

NY
n=1

 (�n)g(An)

where  (�) is the probability density function for the fast
cavity phase error and g(A) is the probability density for
the voltage error. The probability densities are normalized,
meaning that they give probabilities on integration. The
function F is used to compute ensemble averages, e. g.

T =

Z
TF (E;�; �1; A1; :::)dEd�d�1dA1::: :

The average energy is

T = E +

NX
n=1

kX
i=1

EnIi(�n;�0) (1)

where

Ii =

Z
cos (�i + ���0 + �+ �)f(E;�) (�)dEd�d�

since
R
Ag(A)dA = 0. Ii can be re-expressed as

Ii = cos (�i + �� �0)Ic�sin (�i + �� �0)Is ; i = 1; :::k

where

Ic =

Z
cos (� + �)f(E;�) (�)dEd�d� (2)



and Is is the same integral as above except the cosine func-
tion is replaced by the sine function. The vernier sets �0

and the cavity excitations so that

T = E + Ef

kX
i=1

cos�i ; (3)

dT

d�0

= Ef

kX
i=1

sin�i ; (4)

i.e. the energy gain of the accelerator is fixed to
Ef (cos �1 + ::: + cos �k) and the injector phase off-
set is set so the bunch is at a phase �1 during pass 1, ..., �k

during pass k, of the accelerator as a whole. This means

NX
n=1

En[(CIc � SIs) cos (�n ��0)�

(SIc + CIs) sin (�n ��0)] = EfC (5)
NX
n=1

En[(SIc + CIs) cos (�n ��0)+

(CIc � SIs) sin (�n ��0)] = EfS (6)

where C �
P

k

i=1
cos�i and S �

P
k

i=1
sin�i. It is now

possible to solve for the cavity sums:

NX
n=1

En cos (�n � �0) =
IcEf

I2
c
+ I2

s

(7)

NX
n=1

En sin (�n ��0) = �
IsEf

I2
c
+ I2

s

(8)

Now,

T 2 = E2 + 2ES1 + S2 + (1 + IA)S3 ;

where

S1 =

NX
n=1

En[CnIc � SnIs]

S2 =

NX
n=1

NX
p6=n

EnEp[CnCpIcc � CnSpIcs �

SnCpIsc + SnSpIss]

S3 =

NX
n=1

E2

n
[C2

n
I2cc +

S2
n
I2ss � CnSnI2cs � SnCnI2sc] ;

and

Cn =

kX
i=1

cos (�i + �n ��0) ;

and Sn is the same sum as above except the cosine
function is replaced by the sine function. Icc is the
integral of cos (� + �) cos (� + �0) over the probability

densities f(E;�),  (�) and  (�0), Ics is the integral
of cos (� + �) sin (� + �0), I2cc and I2cs are integrals
of cos (� + �) cos (� + �) and cos (� + �) sin (� + �) re-
spectively, and IA =

R
A2 g(A) dA. The relative rms

energy spread is given by the sum of four terms

Trms

T
=

q
T 2 � T

2

T
=

p
E2
rms

+ T 2
1
+ T 2

2
+ T 2

3

T
(9)

where Erms is the energy spread at injection,

T 21 =

NX
n=1

NX
p=1

EnEp(�1 � �2)

T 2
2

=

NX
n=1

E2

n
(�1 � �2)

T 2
3
= IA

NX
n=1

E2

n
[C2

n
I2cc + S2

n
I2ss �CnSn(I2cs + I2sc)]

where

�1 = CnCp(Icc � I
2

c
) + SnSp(Iss � I

2

s
)

�2 = CnSp(Ics + IcIs) + SnCp(Isc � IsIc)

�1 = C2

n
(I2cc � Icc) + S2

n
(I2ss � Iss)

�2 = CnSn(I2cs � Ics) + SnCn(I2sc � Isc)]

The first term in eq. (9) is from the energy spread at injection
and is negligible in the IR DEMO. The second term gives
the contributions from the finite bunch length and from the
injector phase error. Since these errors are the same at each
cavity (correlated errors) the resulting energy spread is in-
dependent of the number of cavities. Also the second term
is independent of the slow phase errors.

The third term is due to the fast phase errors in the indi-
vidual cavities and due to the fact that the bunches traverse
the individual cavities with the slightly wrong phase be-
cause of the slow phase errors. This contribution vanishes
if the fast phase errors vanish since in this case Icc = I2cc,
etc. For fixed total energy the third term is inversely propor-
tional to the number of cavities. The fourth term in the sum
is due to the voltage errors in the system and it is inversely
proportional to the number of cavities, the usual result of
uncorrelated errors.

In the totally correlated case where we assume thatA1 =
:::: = AN and �1 = ::: = �N , the probability density is

F (E;�; �1; A1; :::) = f(E;�) (�1)g(A1)

�

NY
n=2

�(�1 � �n)�(A1 �An) :

The result of calculating T is the same as before. However,

T 21 =
E2

f

(I2
c
+ I2

s
)2
�
(CIc + SIs)

2(I2cc � I2
c
)

+(SIc �CIs)
2(I2ss � I2

s
)

�2(SIc � CIs)(CIc + SIs)(I2cs � IcIs)]

T 22 = 0



T 23 =
IAE

2

f

(I2
c
+ I2

s
)2
�
(CIc + SIs)

2I2cc+

(SIc � CIs)
2I2ss � 2(SIc � CIs)(CIc + SIs)I2cs

�
:

Since the T2 term is zero, there is no dependency of the re-
sult on the slow phase errors �n. The third term is a factor
ofN larger than before, as is characteristic in the transition
from uncorrelated to correlated errors.

As an example, we assume gaussian distributions of er-
rors and obtain,

Ic = exp(��2�=2)exp(��
2

i
=2)exp(��2

�
=2)

Icc = [0:5 + 0:5exp(�2�2�)exp(�2�
2

i
)]exp(��2

�
)

Iss = [0:5� 0:5exp(�2�2
�
)exp(�2�2

i
)]exp(��2

�
)

I2cc = 0:5 + 0:5exp(�2�2�)exp(�2�
2

i
)exp(�2�2

�
)

I2ss = 0:5� 0:5exp(�2�2�)exp(�2�
2

i
)exp(�2�2

�
)

Ics = Isc = Is = I2cs = I2sc = 0

IA = �2
A

:

The effects of the finite bunch length and of the injector
phase error may be characterized by a single parameter
�2
I
= �2

�
+ �2

i
, an “effective bunch length” which depends

on the properties of the injector alone.
We now specify the vernier system in greater detail. As

an example assume that all the cavities except one, them-th
cavity, are set so

En =
EfC

kN
for n 6= m : (10)

This means that Eq. (3) becomes

Em '
EfC

kN

�
1 +

Nk

C
�N +

kN

2C
(�2

I
+ �2

�
) +

N��2

2

�

and

�0 '

NX
n=1

�n=N

to second order in the small quantities�I ,..., and �0. In the
above formula

��2 =

NX
n=1

(�n ��0)
2=N

is approximately the square of the rms average of the slow
phase errors since �0 is approximately equal to the average
of the slow phase errors.

The two estimates give that the relative rms energy
spread satisfies

p
D1 � Erms=E �

p
D2

where

D1 ' �2
I

S2

C2
+ �2

�

S2

k2N

�
2k

C
� 1

�

+�2
A

C2

k2N

�
2k

C
� 1

�
+

1

2
�4
I

+

�
1

2
�4
�
+ �2

I
�2
�

�
C2

k2N

�
2k

C
� 1

�

+
�2
�

k2N

�
��2

�
C2 +

S2

2
+ S2N

�
k

C
� 1

��

+(�2
I
+ �2

�
)S2

�
k

C
� 1

��
kN

C
� 1

�

+4SC(�m � �0)

�
k

C
� 1

�

+2 (�m ��0)
2

�
C2 �

S2

2

��
k

C
� 1

��

+�2
A
(�2

I
+ �2

�
)
S2

k2N

�
2k

C
� 1

�
;

and

D2 ' (�2
I
+�2

�
)
S2

C2
+�2

A
+
1

2
(�2

I
+�2

�
)2+�2

A
(�2

I
+�2

�
)
S2

C2
;

to fourth order in the small quantities. The two estimates
depend on whether the errors are correlated (LH inequality)
or uncorrelated (RH inequality).

If we set S = 0 and C = k for on crest acceleration and
k = 1 for one pass through the accelerator, the expressions
above become

D1 '
1

2
�4
I
+

1

N
�2
�
��2 +

1

N
�2
�

�
1

2
�2
�
+ �2

I

�
+

1

N
�2
A

D2 '
1

2
(�2

I
+ �2

�
)2 + �2

A

in agreement with previous results [1].

3 CEBAF’S IR DEMO: AN EXAMPLE

Now we calculate the rf phase and amplitude tolerances
necessary to obtain 4 � 10�4 energy spread at the end of
the IRFEL linac, where bunches ride 12.5� off crest and the
injection energy is 10 MeV and the final energy is 42 MeV.
We assume an effective bunch length of �I = 3:96� 10�4.
We then split the rest of the energy spread equally between
the phase error and amplitude error. We find that the permis-
sible relative voltage fluctuation�A in the correlated case to
be 2:8�10�4 and the permissible fast phase fluctuation ��
to be 0.07�. The uncorrelated errors are �A � 7:8� 10�4

and �� � 0:2� assuming no vernier, as will be the case in
CEBAF’s IR DEMO FEL.
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