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Abstract

An accelerator, or a storage ring, should be as
modular as possible to make the machine cost effective,
easy to understand and simple to run. Many different
types of modules, from lattice periods to insertions, are
used but their theory rarely exists. The reason lies in the
complexity of the calculations which involve heavy
matrix multiplications and solving high degree algebraic
equations. Expertise and numerical techniques are thus
the usual approach to get an acceptable machine design
but such basic questions as the existence and uniqueness
of a solution are not addressed. A new approach is given
by symbolic methods which relieve the designer from
the analytical computing task and may help him in
finding special cases of elegant simplicity. The treatment
of orbits and betatron oscillations by a symbolic program
is described and a telescope is calculated to illustrate the
program.

1  INTRODUCTION

Since Courant and Snyder established the theory of
alternating focusing in 1958, few authors studied the
detailed properties of the optical components of an
accelerator and, with the exception of the simplest
structures such as the FODO cell [1], never to the degree
of sophistication of the optical instruments of the past.
The first reason lies in the complexity of particle optics
which, for high energy machines, has not the rotational
symmetry of light optics. The second is due to the
advent of ever faster digital computers and powerful
minimization techniques in a multi-dimensional space.
The conjunction of those two facts results in a numerical
design of any accelerator or storage ring. There is no
doubt that a design must end up with numbers but it is
legitimate to wonder whether the conceptual aspects of a
design would not profit from the traditional analytical
methods.
It is interesting to note that at the time of the first high
energy accelerators, particle theorists had to face a
similar calculation problem in tackling Feynmann
diagrams. Some of them, at Veltman’s initiative, decided
to use the computer for algebraic calculations. Symbolic
computing was born but remained a long time an
esoteric tool. Nowadays, several easy-to-use and very

efficient packages are available and can be applied to the
hard problems of beam optics.

The general features of the symbolic beam optics
program BeamOptics [2], based on Mathematica [3], are
first described. They concern the representation of
optical elements and beam lines, the general functions
used to trace trajectories, orbits and betatron oscillations,
and the core of a library of optical structures. In the
second part, a telescope is fully parametrized by solving
a set of eight non-linear equations, existence conditions
are made explicit and the special case of a new device,
the inversor, is revealed and illustrated.

2  THE BEAM OPTICS LIBRARY

2.1  Optical Objects

In the framework of paraxial optics three types of
object are considered: drift spaces, bending magnets and
quadrupoles. They are defined by so called polymorphic
functions which orient the calculations according to the
nature of the arguments e.g. Q[f]  is understood as a thin
lens of focal length f and Q[l,k]  is understood as a
quadrupole of length l and strength k. The same is true
for bending magnets for which the various types
(rectangular, sector, etc.) are determined by options of
the function Bend. The functions can be applied to lists
of elements so that a single statement can generate
several objects: SS[{l1,l2}]  creates the drift spaces SS[l1]
and SS[l2].

The optical elements are assembled in beam lines to
form a Channel object, which can be repeated, reversed
or concatenated with other lines.

2.2  Trajectories

Transfer matrices are central in linear particle
tracking and obtained with the function
TransferMatrix[ch] where ch is an argument of type
Channel. The orbit dispersion and its derivative compose
a DVector  which can be traced anywhere in a line either
in the form of discrete values at the input of an element
or as functions inside an element. This latter feature
makes the graphical representation of the dispersion
rigorous in any part of the beam line. The same is true
for the Courant and Snyder β and α functions which are
regrouped in the SigmaVector.



2.3  Structures

Structures can be built using the Channel objects.
When a beam line repeats itself in a machine its
properties are defined by periodic boundary conditions
applied to the equation of motion of the particle. The
operator of such a structure is Period. The result is a list
of rules so that the β and D-functions, the Sigma and
DVector can be eventually linked to other calculations.
A special period is the classical FODO cell which is
fully documented in the package. When the period has a
mirror symmetry, the simplified calculations are
implemented in HalfPeriod.

Another class of modules concerns matching
structures such as dispersion suppressors (DSuppressor),
half wave transformers (Transformer) [4], singlet for flat
beam final focus (FFFlat) and doublets for round beam
insertions (FFRound) [5]. Many other modules would
have to be created and as an example of derivation of
optical structures, a telescope will be described in the
next section.

3  APPLICATION: TELESCOPE

3.1 The Telescope

The astronomical telescope made of two lenses
images an object at infinity to infinity since the image of
the first lens coincides with the object focus of the
second lens. As a consequence, the transfer matrix of the
optical telescope is given by
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where m is the magnification.
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Figure: 1 Particle trajectories in a thin lens telescope.

The generalization to a charged particle beam has been
proposed by several authors ([5], [6], [7], [8]), who
define a telescope as a device which has a diagonal
transfer matrix in  both planes. These devices need 8
parameters, viz. four focal lengths and four drift space
lengths. The focal lengths and the drift space lengths are
normalized to the first drift space length which is a

scaling variable, here set to 1. The conditions on the
transfer matrices amount to six because their
determinants are unity. Two extra conditions can be
recovered by imposing the coincidence of foci which
then completes the generalization of the optical
telescope.

3.2  Parametrizing a Telescope

In a charged particle telescope the lenses of the
optical telescope are replaced by doublets. (See fig. 1).
The Beam Optics package has a function Focus[ch]
which provides the position of the object and image foci
in both planes (fix, fiy, fox, foy) for any channel, expressed
as functions of the focal lengths of the two quadrupoles,
f1 and f2, and of the distance between them, d:
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In the telescope, the following  constraints are
fulfilled

• The object foci are the same in both planes for the
first doublet (two equations).

• The image foci are the same in both planes for the
second doublet (two equations).

• The image foci of the first doublet coincide with the
object foci of the second doublet (two equations).
This is the afocality condition.

With those 6 equations all parameters l1, l2, l3, l4, f2

and f4 can be expressed in terms of f1 and f3. The
algebraic manipulations are considerably aided by
symbolic computation and give:
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The length l1  is positive if  f1 is less than 1. The
quantities a and b must be of the same sign so that



a b/ and ab and the ratio f3/f1 must obey one of the

two conditions:
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After substitution of the parameters the two transfer
matrices of the telescope are diagonal, as they must be,
and the magnifications are given by
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At this point the problem is fully determined for
specified values of the magnification via implicit
equations.

The expressions of the telescope become very simple

when the ratio f f3 1/ is equal to 1 1 1
2/ ( )− f . The two

magnifications are then inverse and this special
telescope is called an inversor. Figures 2 and 3 show the
plots of β and µ functions in an inversor inserted
between the F- and D- quadrupoles of a FODO cell.
Such a device can be considered as a phase-shifter. The
arbitrary length of the first drift space can be increased,
here to 4 m, to make the inversor a high β insertion
(Figure 4). The graphs have been produced with the
functions FODO, Inversor, BetaPlot and MuPlot.
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Figure: 2 β-plots in a phase-shifter.
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Figure: 3 µ-plots in a phase shifter
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Figure: 4 β-plots in a high beta insertion

4  CONCLUSION
It has been shown that symbolic manipulation can

give access to the theoretical understanding of an optical
module. If the elaboration of the module may present
difficulties, the initial investment becomes rewarding for
the user who has only to manipulate a very simple
function which has all expressions and existence
conditions pre-coded.
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